BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23296091)

  • 41. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide.
    Hou J; Cheng H; Takeda O; Zhu H
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8480-4. PubMed ID: 26068934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper oxide nanocrystals.
    Yin M; Wu CK; Lou Y; Burda C; Koberstein JT; Zhu Y; O'Brien S
    J Am Chem Soc; 2005 Jul; 127(26):9506-11. PubMed ID: 15984877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2.
    Liu Z; Amiridis MD; Chen Y
    J Phys Chem B; 2005 Jan; 109(3):1251-5. PubMed ID: 16851088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CuO nanorod arrays by gas-phase cation exchange for efficient photoelectrochemical water splitting.
    Zheng Z; Morgan M; Maji P; Xia X; Zu X; Zhou W
    RSC Adv; 2023 Jan; 13(6):3487-3493. PubMed ID: 36756593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO. Evidence for a reductive-oxidative interfacial mechanism.
    Bandara J; Guasaquillo I; Bowen P; Soare L; Jardim WF; Kiwi J
    Langmuir; 2005 Aug; 21(18):8554-9. PubMed ID: 16114971
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process.
    Yao WT; Yu SH; Zhou Y; Jiang J; Wu QS; Zhang L; Jiang J
    J Phys Chem B; 2005 Jul; 109(29):14011-6. PubMed ID: 16852759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2.
    Sagar GV; Rao PV; Srikanth CS; Chary KV
    J Phys Chem B; 2006 Jul; 110(28):13881-8. PubMed ID: 16836337
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-step formation of core-shell sulfide-oxide nanorod arrays from a single precursor.
    Lin YF; Hsu YJ; Lu SY; Chiang WS
    Nanotechnology; 2006 Sep; 17(18):4773-82. PubMed ID: 21727611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The evolution of well-aligned amorphous carbon nanotubes and porous ZnO/C core-shell nanorod arrays for photosensor applications.
    Wang RC; Hsu CC; Chen SJ
    Nanotechnology; 2011 Jan; 22(3):035704. PubMed ID: 21149959
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells.
    Wong AB; Brittman S; Yu Y; Dasgupta NP; Yang P
    Nano Lett; 2015 Jun; 15(6):4096-101. PubMed ID: 25993088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction.
    Zhang Z; Dua R; Zhang L; Zhu H; Zhang H; Wang P
    ACS Nano; 2013 Feb; 7(2):1709-17. PubMed ID: 23363436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity.
    Sasmal AK; Dutta S; Pal T
    Dalton Trans; 2016 Feb; 45(7):3139-50. PubMed ID: 26776952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrafast Growth of a Cu(OH)
    Anantharaj S; Sugime H; Noda S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27327-27338. PubMed ID: 32459085
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide.
    Shang L; Lv X; Shen H; Shao Z; Zheng G
    J Colloid Interface Sci; 2019 Sep; 552():426-431. PubMed ID: 31151020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays.
    Yang J; Jiang LC; Zhang WD; Gunasekaran S
    Talanta; 2010 Jun; 82(1):25-33. PubMed ID: 20685430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Core/shell CuO/Al nanorod thermite film based on electrochemical anodization.
    Yu C; Zhang W; Hu B; Ni D; Zheng Z; Liu J; Ma K; Ren W
    Nanotechnology; 2018 Sep; 29(36):36LT02. PubMed ID: 29897341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copper-based nanowire materials: templated syntheses, characterizations, and applications.
    Wen X; Xie Y; Choi CL; Wan KC; Li XY; Yang S
    Langmuir; 2005 May; 21(10):4729-37. PubMed ID: 16032897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.
    Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX
    Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.