These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23296518)

  • 1. Enzyme entrapped in polymer-modified nanopores: the effects of macromolecular crowding and surface hydrophobicity.
    Liu J; Peng J; Shen S; Jin Q; Li C; Yang Q
    Chemistry; 2013 Feb; 19(8):2711-9. PubMed ID: 23296518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment.
    Liu J; Bai S; Jin Q; Zhong H; Li C; Yang Q
    Langmuir; 2012 Jun; 28(25):9788-96. PubMed ID: 22642540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase.
    He J; Xu Y; Ma H; Zhang Q; Evans DG; Duan X
    J Colloid Interface Sci; 2006 Jun; 298(2):780-6. PubMed ID: 16430912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of microwave-assisted covalent immobilization of penicillin acylase using macromolecular crowding and glycine quenching.
    Wang A; Zhou C; Du Z; Liu M; Zhu S; Shen S; Ouyang P
    J Biosci Bioeng; 2009 Mar; 107(3):219-24. PubMed ID: 19269581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of water to evaluate hydrophobicity of organically-modified xerogel enzyme supports.
    Clifford JS; Legge RL
    Biotechnol Bioeng; 2005 Oct; 92(2):231-7. PubMed ID: 15988768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica.
    Jin Q; Jia G; Zhang Y; Yang Q; Li C
    Langmuir; 2011 Oct; 27(19):12016-24. PubMed ID: 21851086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase.
    Zou B; Hu Y; Cui F; Jiang L; Yu D; Huang H
    J Colloid Interface Sci; 2014 Mar; 417():210-6. PubMed ID: 24407679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes.
    Yang X; Cai Z; Ye Z; Chen S; Yang Y; Wang H; Liu Y; Cao A
    Nanoscale; 2012 Jan; 4(2):414-6. PubMed ID: 22095140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crowding and confinement effects on enzyme stability in mesoporous silicas.
    Shin S; Kim HS; Kim MI; Lee J; Park HG; Kim J
    Int J Biol Macromol; 2020 Feb; 144():118-126. PubMed ID: 31812745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New monolithic chromatographic supports for macromolecules immobilization: challenges and opportunities.
    Calleri E; Ambrosini S; Temporini C; Massolini G
    J Pharm Biomed Anal; 2012 Oct; 69():64-76. PubMed ID: 22386208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybrid supports.
    Godjevargova T; Nenkova R; Dimova N
    Macromol Biosci; 2005 Aug; 5(8):760-6. PubMed ID: 16080168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of proteins inside a hydrophobic cavity.
    Radhakrishna M; Grimaldi J; Belfort G; Kumar SK
    Langmuir; 2013 Jul; 29(28):8922-8. PubMed ID: 23750997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique.
    Karimpil JJ; Melo JS; D'Souza SF
    Int J Biol Macromol; 2012 Jan; 50(1):300-2. PubMed ID: 22062119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly.
    Jin Q; Li X; Deng C; Zhang Q; Yi D; Wang X; Tang Y; Wang Y
    J Colloid Interface Sci; 2018 Dec; 531():555-563. PubMed ID: 30056330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes immobilized in mesoporous silica: a physical-chemical perspective.
    Carlsson N; Gustafsson H; Thörn C; Olsson L; Holmberg K; Åkerman B
    Adv Colloid Interface Sci; 2014 Mar; 205():339-60. PubMed ID: 24112562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement in adsorption and catalytic activity of enzymes immobilized on phosphorus- and calcium-modified MCM-41.
    Yasutaka K; Takato Y; Takashi K; Kohsuke M; Hiromi Y
    J Phys Chem B; 2011 Sep; 115(34):10335-45. PubMed ID: 21776977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Active surfaces" formed by immobilization of enzymes on solid-supported polymer membranes.
    Draghici C; Kowal J; Darjan A; Meier W; Palivan CG
    Langmuir; 2014 Oct; 30(39):11660-9. PubMed ID: 25207981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized ionic liquid modified mesoporous silica SBA-15: a novel, designable and efficient carrier for porcine pancreas lipase.
    Zou B; Hu Y; Yu D; Jiang L; Liu W; Song P
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):93-9. PubMed ID: 21872768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved enzymatic activity of Thermomyces lanuginosus lipase immobilized in a hydrophobic particulate mesoporous carrier.
    Sörensen MH; Ng JB; Bergström L; Alberius PC
    J Colloid Interface Sci; 2010 Mar; 343(1):359-65. PubMed ID: 20022021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores.
    Sang LC; Coppens MO
    Phys Chem Chem Phys; 2011 Apr; 13(14):6689-98. PubMed ID: 21369603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.