BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23296527)

  • 1. In-solution digestion of glycoproteins for glycopeptide-based mass analysis.
    Go EP; Rebecchi KR; Desaire H
    Methods Mol Biol; 2013; 951():103-11. PubMed ID: 23296527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE).
    Jensen PH; Mysling S; Højrup P; Jensen ON
    Methods Mol Biol; 2013; 951():131-44. PubMed ID: 23296529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of boronic acid nanoparticles in glycoprotein enrichment.
    Xu Y; Zhang L; Lu H
    Methods Mol Biol; 2013; 951():45-55. PubMed ID: 23296523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-HPLC-MS of glycopeptides obtained after nonspecific proteolysis.
    Zauner G; Koeleman CA; Deelder AM; Wuhrer M
    Methods Mol Biol; 2013; 951():113-27. PubMed ID: 23296528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dephosphorylation of intact glycoprotein to greatly improve digestion efficiency coupled with matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometric analysis.
    Li F; Wang X; Liu Y; Liu H; Li Z
    Anal Chim Acta; 2013 Jul; 787():140-7. PubMed ID: 23830432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pipeline approach achieving glycoprotein identification and obtaining intact glycopeptide information by tandem mass spectrometry.
    Chen Y; Liu M; Yan G; Lu H; Yang P
    Mol Biosyst; 2010 Dec; 6(12):2417-22. PubMed ID: 20886165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides.
    Neue K; Mormann M; Peter-Katalinić J; Pohlentz G
    J Proteome Res; 2011 May; 10(5):2248-60. PubMed ID: 21443200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate for enhancing the ionization yield of small peptides and glycopeptides in matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry.
    Ullmer R; Plematl A; Rizzi A
    Rapid Commun Mass Spectrom; 2006; 20(9):1469-79. PubMed ID: 16586471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid characterization of N-linked glycosylation site using non-specific protease digestion of gel-separated glycoproteins and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry.
    Yu T; Luo Y; Yang K
    Eur J Mass Spectrom (Chichester); 2011; 17(6):573-9. PubMed ID: 22274947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycoproteomics based on tandem mass spectrometry of glycopeptides.
    Wuhrer M; Catalina MI; Deelder AM; Hokke CH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):115-28. PubMed ID: 17049937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-target endoglycosidase digestion matrix-assisted laser desorption/ionization mass spectrometry of glycopeptides.
    Colangelo J; Orlando R
    Rapid Commun Mass Spectrom; 2001; 15(23):2284-9. PubMed ID: 11746894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches.
    Demelbauer UM; Zehl M; Plematl A; Allmaier G; Rizzi A
    Rapid Commun Mass Spectrom; 2004; 18(14):1575-82. PubMed ID: 15282782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted nonspecific proteolytic digestion and controlled methylation for glycomics applications.
    Liu X; Chan K; Chu IK; Li J
    Carbohydr Res; 2008 Nov; 343(17):2870-7. PubMed ID: 18768173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment strategies for glycopeptides.
    Ito S; Hayama K; Hirabayashi J
    Methods Mol Biol; 2009; 534():195-203. PubMed ID: 19277551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Protein N-Glycosylation by Analysis of ZIC-HILIC-Enriched Intact Proteolytic Glycopeptides.
    Pohlentz G; Marx K; Mormann M
    Methods Mol Biol; 2016; 1394():163-179. PubMed ID: 26700048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized protocol for nano-LC-MALDI-TOF-MS coupling for the analysis of proteolytic digests of glycoproteins.
    Lochnit G; Geyer R
    Biomed Chromatogr; 2004 Dec; 18(10):841-8. PubMed ID: 15386570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive multistage mass spectrometry enables small-scale analysis of protein glycosylation from two-dimensional polyacrylamide gels.
    Takemori N; Komori N; Matsumoto H
    Electrophoresis; 2006 Apr; 27(7):1394-406. PubMed ID: 16502458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative and quantitative assessment on the use of magnetic nanoparticles for glycopeptide enrichment.
    Bodnar ED; Perreault H
    Anal Chem; 2013 Nov; 85(22):10895-903. PubMed ID: 24111716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microwave-assisted protein digestion based on trypsin-immobilized magnetic microspheres for highly efficient proteolysis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.
    Lin S; Lin Z; Yao G; Deng C; Yang P; Zhang X
    Rapid Commun Mass Spectrom; 2007; 21(23):3910-8. PubMed ID: 17990248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of individual glycosylation sites on glycoproteins.
    Powell LD
    Curr Protoc Mol Biol; 2001 May; Chapter 17():Unit17.14B. PubMed ID: 18265144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.