These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23296566)

  • 1. Computational study and peptide inhibitors design for the CDK9 - cyclin T1 complex.
    Randjelović J; Erić S; Savić V
    J Mol Model; 2013 Apr; 19(4):1711-25. PubMed ID: 23296566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the Functions of HIV-1 Tat and a Second Magnesium Ion in the CDK9/Cyclin T1 Complex: A Molecular Dynamics Simulation Study.
    Jin HX; Go ML; Yin P; Qiu XT; Zhu P; Yan XJ
    PLoS One; 2015; 10(4):e0124673. PubMed ID: 25909811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico design of small molecule inhibitors of CDK9/cyclin T1 interaction.
    Randjelovic J; Eric S; Savic V
    J Mol Graph Model; 2014 May; 50():100-12. PubMed ID: 24769691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CDK9 tail determines the reaction pathway of positive transcription elongation factor b.
    Baumli S; Hole AJ; Wang LZ; Noble ME; Endicott JA
    Structure; 2012 Oct; 20(10):1788-95. PubMed ID: 22959624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding.
    Asamitsu K; Hirokawa T; Okamoto T
    PLoS One; 2017; 12(2):e0171727. PubMed ID: 28178316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering potential CDK9 inhibitors from natural compound databases through docking-based virtual screening and MD simulations.
    Singh P; Kumar V; Jung TS; Lee JS; Lee KW; Hong JC
    J Mol Model; 2024 Jul; 30(8):267. PubMed ID: 39012568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel CDK 9 inhibitors based on virtual screening, molecular dynamics simulation, and biological evaluation.
    Wu M; Han J; Liu Z; Zhang Y; Huang C; Li J; Li Z
    Life Sci; 2020 Oct; 258():118228. PubMed ID: 32781071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological targeting of CDK9 in cardiac hypertrophy.
    Krystof V; Chamrád I; Jorda R; Kohoutek J
    Med Res Rev; 2010 Jul; 30(4):646-66. PubMed ID: 19757441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508.
    Baumli S; Hole AJ; Noble ME; Endicott JA
    ACS Chem Biol; 2012 May; 7(5):811-6. PubMed ID: 22292676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CDK9/cyclin T1 subunits of P-TEFb in mouse oocytes and preimplantation embryos: a possible role in embryonic genome activation.
    Oqani RK; Kim HR; Diao YF; Park CS; Jin DI
    BMC Dev Biol; 2011 Jun; 11():33. PubMed ID: 21639898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of novel CDK inhibitors via scaffold hopping from CAN508.
    Jing L; Tang Y; Xiao Z
    Bioorg Med Chem Lett; 2018 May; 28(8):1386-1391. PubMed ID: 29550093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halogen bonds form the basis for selective P-TEFb inhibition by DRB.
    Baumli S; Endicott JA; Johnson LN
    Chem Biol; 2010 Sep; 17(9):931-6. PubMed ID: 20851342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation.
    Baumli S; Lolli G; Lowe ED; Troiani S; Rusconi L; Bullock AN; Debreczeni JE; Knapp S; Johnson LN
    EMBO J; 2008 Jul; 27(13):1907-18. PubMed ID: 18566585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDK9 a potential target for drug development.
    Canduri F; Perez PC; Caceres RA; de Azevedo WF
    Med Chem; 2008 May; 4(3):210-8. PubMed ID: 18473913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A virtual screening investigation to identify bioactive natural compounds as potential inhibitors of cyclin-dependent kinase 9.
    Atiya A; Shahidi H; Mohammad T; Sharaf SE; Abdulmonem WA; Ashraf GM; Elasbali AM; Alharethi SH; Alhumaydhi FA; Baeesa SS; Rehan M; Shamsi A; Shahwan M
    J Biomol Struct Dyn; 2023 Nov; 41(19):10202-10213. PubMed ID: 36562191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction.
    Taghizadeh MS; Taherishirazi M; Niazi A; Afsharifar A; Moghadam A
    Front Pharmacol; 2024; 15():1327820. PubMed ID: 38808256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interaction between cyclin T1/cdk9 and Puralpha determines the level of TNFalpha promoter activation by Tat in glial cells.
    Darbinian N; Sawaya BE; Khalili K; Jaffe N; Wortman B; Giordano A; Amini S
    J Neuroimmunol; 2001 Dec; 121(1-2):3-11. PubMed ID: 11730934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in Nef-dependent manner.
    Khan SZ; Mitra D
    J Biol Chem; 2011 Jul; 286(26):22943-54. PubMed ID: 21555514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription.
    O'Keeffe B; Fong Y; Chen D; Zhou S; Zhou Q
    J Biol Chem; 2000 Jan; 275(1):279-87. PubMed ID: 10617616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CDK9-cyclin T1 complex mediates saturated fatty acid-induced vascular calcification by inducing expression of the transcription factor CHOP.
    Shiozaki Y; Okamura K; Kohno S; Keenan AL; Williams K; Zhao X; Chick WS; Miyazaki-Anzai S; Miyazaki M
    J Biol Chem; 2018 Nov; 293(44):17008-17020. PubMed ID: 30209133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.