These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 232966)

  • 21. A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia.
    Dóra E
    J Neurochem; 1984 Jan; 42(1):101-8. PubMed ID: 6689684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interrelation between brain PO2 and NADH oxidation-reduction state in the gerbil.
    Mayevsky A; Lebourdais S; Chance B
    J Neurosci Res; 1980; 5(3):173-82. PubMed ID: 7401196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlated, simultaneous, multiple-wavelength optical monitoring in vivo of localized cerebrocortical NADH and brain microvessel hemoglobin oxygen saturation.
    Rampil IJ; Litt L; Mayevsky A
    J Clin Monit; 1992 Jul; 8(3):216-25. PubMed ID: 1494928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical NADH, pO2, electrical activity and arterial blood pressure oscillations in hypoxaemia.
    Dóra E; Olaffson K; Chance B; Kovách AG
    Adv Exp Med Biol; 1976; 75():299-305. PubMed ID: 189585
    [No Abstract]   [Full Text] [Related]  

  • 25. Electric activity and oxygen tension of the brain during ischaemic anoxia and reperfusion.
    Halmágyi G; Lantos J; Szirmai I; Török B
    Acta Chir Acad Sci Hung; 1977; 18(4):375-91. PubMed ID: 617034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of cerebrocortical blood flow during the early phase of arterial anoxia.
    Dóra E; Zeuten T; Silver I; Chance B; Kovách AG
    Bibl Anat; 1977; (15 Pt 1):365-6. PubMed ID: 597174
    [No Abstract]   [Full Text] [Related]  

  • 27. Potassium ion homeostasis and mitochondrial redox activity in brain: relative changes as indicators of hypoxia.
    Milito SJ; Raffin CN; Rosenthal M; Sick TJ
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):155-62. PubMed ID: 3343290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenobarbital actions in vivo: effects on extra cellular potassium activity and oxidative metabolism in cat cerebral cortex.
    LaManna JC; Cordingley G; Rosenthal M
    J Pharmacol Exp Ther; 1977 Mar; 200(3):560-9. PubMed ID: 191589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of cerebral hypoxia and hyperventilation hypocapnia on the epileptiform activity of the cerebral cortex of the cat].
    Frankshteĭn SI; Smolin LN; Sergeeva LN
    Fiziol Zh SSSR Im I M Sechenova; 1986 May; 72(5):576-9. PubMed ID: 3087794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurements with ionselective electrodes in the brain cortex during a short period of ischemia and arterial hypoxia.
    Urbanics R; Leniger-Follert E; Lübbers DW
    Z Med Lab Diagn; 1982 Apr; 23(2):92-5. PubMed ID: 6287751
    [No Abstract]   [Full Text] [Related]  

  • 31. [Changes in the oxygen tension and bioelectrical activity of the brains of animals subjected to acute hypoxia].
    Akopian NS; Baklavadzhian OG
    Fiziol Zh SSSR Im I M Sechenova; 1975 Sep; 61(9):1303-9. PubMed ID: 1213192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Regulation of local tissue PO2 in the cerebral cortex of the cat].
    Leniger-Follert E; Lübbers DW; Wrabetz W
    Fiziol Zh SSSR Im I M Sechenova; 1975 Oct; 61(10):1513-7. PubMed ID: 1292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prolonged mild hypoxia alters fetal sheep electrocorticogram activity.
    Pulgar VM; Zhang J; Massmann GA; Figueroa JP
    J Soc Gynecol Investig; 2006 Sep; 13(6):404-11. PubMed ID: 16879989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism.
    Dóra E
    Acta Physiol Hung; 1985; 66(2):199-211. PubMed ID: 4050463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of reduced oxygen availability on cerebral metabolic changes during bicuculline-induced seizures in rats.
    Blennow G; Nilsson B; Siesjö BK
    J Cereb Blood Flow Metab; 1985 Sep; 5(3):439-45. PubMed ID: 4030921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of topical adenosine deaminase treatment on the functional hyperemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E; Koller A; Kovách AG
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):447-57. PubMed ID: 6470059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain metabolic and ionic responses to systemic hypoxia in the newborn dog in vivo.
    Yoles E; Zarchin N; Zurovsky Y; Guggenheimer-Furman E; Mayevsky A
    Neurol Res; 1999 Dec; 21(8):765-70. PubMed ID: 10596386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of "flow anoxia" and "non flow anoxia" on the NAD/NADH redox state of the intact brain cortex of the cat.
    Dóra E
    Pflugers Arch; 1985 Sep; 405(2):148-54. PubMed ID: 4059037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of acetazolamide on cerebrocortical NADH and blood volume.
    Bickler PE; Litt L; Severinghaus JW
    J Appl Physiol (1985); 1988 Jul; 65(1):428-33. PubMed ID: 3136135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation of brain NADH redox state, K+, PO2 and electrical activity during hypoxia, ischemia and spreading depression.
    Mayevsky A; Sclarksy DL
    Adv Exp Med Biol; 1983; 159():129-41. PubMed ID: 6637606
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.