These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23296685)
1. Refined distances between paramagnetic centers of a multi-copper nitrite reductase determined by pulsed EPR (iDEER) spectroscopy. van Wonderen JH; Kostrz DN; Dennison C; MacMillan F Angew Chem Int Ed Engl; 2013 Feb; 52(7):1990-3. PubMed ID: 23296685 [No Abstract] [Full Text] [Related]
2. A magnetic and electronic circular dichroism study of azurin, plastocyanin, cucumber basic protein, and nitrite reductase based on time-dependent density functional theory calculations. Zhekova HR; Seth M; Ziegler T J Phys Chem A; 2010 Jun; 114(21):6308-21. PubMed ID: 20450218 [TBL] [Abstract][Full Text] [Related]
4. The substrate-bound type 2 copper site of nitrite reductase: the nitrogen hyperfine coupling of nitrite revealed by pulsed EPR. Fittipaldi M; Wijma HJ; Verbeet MP; Canters GW; Groenen EJ; Huber M Biochemistry; 2005 Nov; 44(46):15193-202. PubMed ID: 16285722 [TBL] [Abstract][Full Text] [Related]
5. Active Intermediates in Copper Nitrite Reductase Reactions Probed by a Cryotrapping-Electron Paramagnetic Resonance Approach. Hedison TM; Shanmugam M; Heyes DJ; Edge R; Scrutton NS Angew Chem Int Ed Engl; 2020 Aug; 59(33):13936-13940. PubMed ID: 32352195 [TBL] [Abstract][Full Text] [Related]
6. EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Howes BD; Abraham ZH; Lowe DJ; Brüser T; Eady RR; Smith BE Biochemistry; 1994 Mar; 33(11):3171-7. PubMed ID: 8136351 [TBL] [Abstract][Full Text] [Related]
7. Magnetic circular dichroism evidence for a weakly coupled heme-radical pair at the active site of cytochrome cd1, a nitrite reductase. Oganesyan VS; Cheesman MR; Thomson AJ Inorg Chem; 2007 Dec; 46(26):10950-2. PubMed ID: 18044879 [TBL] [Abstract][Full Text] [Related]
8. The binding of nitric oxide at the Cu(i) site of copper nitrite reductase and of inorganic models: DFT calculations of the energetics and EPR parameters of side-on and end-on structures. Periyasamy G; Sundararajan M; Hillier IH; Burton NA; McDouall JJ Phys Chem Chem Phys; 2007 May; 9(20):2498-506. PubMed ID: 17508082 [TBL] [Abstract][Full Text] [Related]
9. Alcaligenes xylosoxidans dissimilatory nitrite reductase: alanine substitution of the surface-exposed histidine 139l ligand of the type 1 copper center prevents electron transfer to the catalytic center. Prudêncio M; Sawers G; Fairhurst SA; Yousafzai FK; Eady RR Biochemistry; 2002 Mar; 41(10):3430-8. PubMed ID: 11876652 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the type 2 copper centers are the site of nitrite reduction by Achromobacter cycloclastes nitrite reductase. Libby E; Averill BA Biochem Biophys Res Commun; 1992 Sep; 187(3):1529-35. PubMed ID: 1329738 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic and functional characterization of Cu-containing nitrite reductase from Hyphomicrobium denitrificans A3151. Deligeer ; Fukunaga R; Kataoka K; Yamaguchi K; Kobayashi K; Tagawa S; Suzuki S J Inorg Biochem; 2002 Jul; 91(1):132-8. PubMed ID: 12121770 [TBL] [Abstract][Full Text] [Related]
12. Magnetization of the sulfite and nitrite complexes of oxidized sulfite and nitrite reductases: EPR silent spin S = 1/2 states. Day EP; Peterson J; Bonvoisin JJ; Young LJ; Wilkerson JO; Siegel LM Biochemistry; 1988 Mar; 27(6):2126-32. PubMed ID: 2837283 [TBL] [Abstract][Full Text] [Related]
14. EPR-ENDOR of the Cu(I)NO complex of nitrite reductase. Usov OM; Sun Y; Grigoryants VM; Shapleigh JP; Scholes CP J Am Chem Soc; 2006 Oct; 128(40):13102-11. PubMed ID: 17017790 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase. Suzuki S; Yoshimura T; Kohzuma T; Shidara S; Masuko M; Sakurai T; Iwasaki H Biochem Biophys Res Commun; 1989 Nov; 164(3):1366-72. PubMed ID: 2556127 [TBL] [Abstract][Full Text] [Related]
16. Metalloproteins: A switch for blue copper proteins? Samanta S; Lehnert N Nat Chem; 2016 Jun; 8(7):639-41. PubMed ID: 27325087 [No Abstract] [Full Text] [Related]
17. Spectroscopic and computational studies of nitrite reductase: proton induced electron transfer and backbonding contributions to reactivity. Ghosh S; Dey A; Sun Y; Scholes CP; Solomon EI J Am Chem Soc; 2009 Jan; 131(1):277-88. PubMed ID: 19053185 [TBL] [Abstract][Full Text] [Related]
18. Hydrotris(triazolyl)borate complexes as functional models for Cu nitrite reductase: the electronic influence of distal nitrogens. Kumar M; Dixon NA; Merkle AC; Zeller M; Lehnert N; Papish ET Inorg Chem; 2012 Jul; 51(13):7004-6. PubMed ID: 22671968 [TBL] [Abstract][Full Text] [Related]
19. Overexpression, purification, and biochemical and spectroscopic characterization of copper-containing nitrite reductase from Sinorhizobium meliloti 2011. Study of the interaction of the catalytic copper center with nitrite and NO. Ferroni FM; Guerrero SA; Rizzi AC; Brondino CD J Inorg Biochem; 2012 Sep; 114():8-14. PubMed ID: 22687560 [TBL] [Abstract][Full Text] [Related]
20. pH dependence of copper geometry, reduction potential, and nitrite affinity in nitrite reductase. Jacobson F; Pistorius A; Farkas D; De Grip W; Hansson O; Sjölin L; Neutze R J Biol Chem; 2007 Mar; 282(9):6347-55. PubMed ID: 17148448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]