BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23296894)

  • 1. Hyperbranching rolling circle amplification, an improved protocol for discriminating between closely related fungal species.
    Sun J; de Hoog S
    Methods Mol Biol; 2013; 968():167-75. PubMed ID: 23296894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences.
    Marciniak J; Kummel A; Esener S; Heller M; Messmer B
    Biotechniques; 2008 Sep; 45(3):275-80. PubMed ID: 18778251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and multiplex detection of pathogenic fungi using padlock probes, generic qPCR, and suspension array readout.
    Jobs M; Eriksson R; Blomberg J
    Methods Mol Biol; 2013; 968():105-18. PubMed ID: 23296889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid identification of Fusarium graminearum species complex using Rolling Circle Amplification (RCA).
    Davari M; van Diepeningen AD; Babai-Ahari A; Arzanlou M; Najafzadeh MJ; van der Lee TA; de Hoog GS
    J Microbiol Methods; 2012 Apr; 89(1):63-70. PubMed ID: 22326479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid identification of fungal pathogens by rolling circle amplification using Fonsecaea as a model.
    Najafzadeh MJ; Sun J; Vicente VA; de Hoog GS
    Mycoses; 2011 Sep; 54(5):e577-82. PubMed ID: 21910759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex and quantifiable detection of nucleic acid from pathogenic fungi using padlock probes, generic real time PCR and specific suspension array readout.
    Eriksson R; Jobs M; Ekstrand C; Ullberg M; Herrmann B; Landegren U; Nilsson M; Blomberg J
    J Microbiol Methods; 2009 Aug; 78(2):195-202. PubMed ID: 19490930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification.
    Ji H; Yan F; Lei J; Ju H
    Anal Chem; 2012 Aug; 84(16):7166-71. PubMed ID: 22823454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular identification of Penicillium marneffei using rolling circle amplification.
    Sun J; Najafzadeh MJ; Zhang J; Vicente VA; Xi L; de Hoog GS
    Mycoses; 2011 Nov; 54(6):e751-9. PubMed ID: 21929692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers.
    Najafzadeh MJ; Dolatabadi S; Saradeghi Keisari M; Naseri A; Feng P; de Hoog GS
    J Microbiol Methods; 2013 Sep; 94(3):338-42. PubMed ID: 23872449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.
    Lizardi PM; Huang X; Zhu Z; Bray-Ward P; Thomas DC; Ward DC
    Nat Genet; 1998 Jul; 19(3):225-32. PubMed ID: 9662393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of rolling-circle amplification using a modified molecular beacon design.
    Nilsson M; Gullberg M; Dahl F; Szuhai K; Raap AK
    Nucleic Acids Res; 2002 Jul; 30(14):e66. PubMed ID: 12136114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology.
    Long Y; Zhou X; Xing D
    Biosens Bioelectron; 2011 Feb; 26(6):2897-904. PubMed ID: 21183330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal amplification by rolling circle amplification on universal flaps yielded from target-specific invasive reaction.
    Zou B; Ma Y; Wu H; Zhou G
    Analyst; 2012 Feb; 137(3):729-34. PubMed ID: 22158835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of target nucleic acids and proteins by amplification of circularizable probes.
    Zhang DY; Liu B
    Expert Rev Mol Diagn; 2003 Mar; 3(2):237-48. PubMed ID: 12647998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification of circularizable probes for the detection of target nucleic acids and proteins.
    Zhang D; Wu J; Ye F; Feng T; Lee I; Yin B
    Clin Chim Acta; 2006 Jan; 363(1-2):61-70. PubMed ID: 16122721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic acid isothermal amplification technologies: a review.
    Gill P; Ghaemi A
    Nucleosides Nucleotides Nucleic Acids; 2008 Mar; 27(3):224-43. PubMed ID: 18260008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.
    Xiang Y; Zhu X; Huang Q; Zheng J; Fu W
    Biosens Bioelectron; 2015 Apr; 66():512-9. PubMed ID: 25500527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Padlock probes and rolling circle amplification for detection of repeats and single-copy genes in the single-cell comet assay.
    Henriksson S; Nilsson M
    Methods Mol Biol; 2012; 853():95-103. PubMed ID: 22323143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification.
    Cao A; Zhang CY
    Anal Chem; 2012 Jul; 84(14):6199-205. PubMed ID: 22715985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.