These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23296984)

  • 1. Biomimetic methodology to produce polymeric multilayered particles for biotechnological and biomedical applications.
    Lima AC; Custódio CA; Alvarez-Lorenzo C; Mano JF
    Small; 2013 Aug; 9(15):2487-92, 2486. PubMed ID: 23296984
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis of temperature-responsive dextran-MA/PNIPAAm particles for controlled drug delivery using superhydrophobic surfaces.
    Lima AC; Song W; Blanco-Fernandez B; Alvarez-Lorenzo C; Mano JF
    Pharm Res; 2011 Jun; 28(6):1294-305. PubMed ID: 21298327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible polymeric microparticles produced by a simple biomimetic approach.
    Costa AM; Alatorre-Meda M; Oliveira NM; Mano JF
    Langmuir; 2014 Apr; 30(16):4535-9. PubMed ID: 24738655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetics--a review.
    Vincent JF
    Proc Inst Mech Eng H; 2009 Nov; 223(8):919-39. PubMed ID: 20092091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel methodology based on biomimetic superhydrophobic substrates to immobilize cells and proteins in hydrogel spheres for applications in bone regeneration.
    Lima AC; Batista P; Valente TA; Silva AS; Correia IJ; Mano JF
    Tissue Eng Part A; 2013 May; 19(9-10):1175-87. PubMed ID: 23249253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical conjugation of cowpea mosaic viruses with reactive HPMA-based polymers.
    Laga R; Konák C; Subr V; Ulbrich K; Suthiwangcharoen N; Niu Z; Wang Q
    J Biomater Sci Polym Ed; 2010; 21(12):1669-85. PubMed ID: 20537248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces.
    Zhang X; Tan S; Zhao N; Guo X; Zhang X; Zhang Y; Xu J
    Chemphyschem; 2006 Oct; 7(10):2067-70. PubMed ID: 16941559
    [No Abstract]   [Full Text] [Related]  

  • 10. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules.
    Solano F
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28718807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic approach for liquid encapsulation with nanofibrillar cloaks.
    Mele E; Bayer IS; Nanni G; Heredia-Guerrero JA; Ruffilli R; Ayadi F; Marini L; Cingolani R; Athanassiou A
    Langmuir; 2014 Mar; 30(10):2896-902. PubMed ID: 24564574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers.
    Costa AM; Alatorre-Meda M; Alvarez-Lorenzo C; Mano JF
    Small; 2015 Aug; 11(30):3648-52. PubMed ID: 25764987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of hydrogels for neural cell engineering.
    Hynd MR; Turner JN; Shain W
    J Biomater Sci Polym Ed; 2007; 18(10):1223-44. PubMed ID: 17939883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially controlled surface energy traps on superhydrophobic surfaces.
    Milionis A; Fragouli D; Martiradonna L; Anyfantis GC; Cozzoli PD; Bayer IS; Athanassiou A
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1036-43. PubMed ID: 24386959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic surface modification of discoidal polymeric particles.
    Nguyen TDT; Aryal S; Pitchaimani A; Park S; Key J; Aryal S
    Nanomedicine; 2019 Feb; 16():79-87. PubMed ID: 30529792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.
    Li L; Huang T; Lei J; He J; Qu L; Huang P; Zhou W; Li N; Pan F
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1449-57. PubMed ID: 25545550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface.
    Luo R; Cao Y; Shi P; Chen CH
    Small; 2014 Dec; 10(23):4886-94. PubMed ID: 25059988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film.
    Kamei J; Saito Y; Yabu H
    Langmuir; 2014 Dec; 30(47):14118-22. PubMed ID: 25401223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.