These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 23297068)
1. Control of malodorous hydrogen sulfide compounds using microbial fuel cell. Eaktasang N; Min HS; Kang C; Kim HS Bioprocess Biosyst Eng; 2013 Oct; 36(10):1417-25. PubMed ID: 23297068 [TBL] [Abstract][Full Text] [Related]
2. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. Sun M; Tong ZH; Sheng GP; Chen YZ; Zhang F; Mu ZX; Wang HL; Zeng RJ; Liu XW; Yu HQ; Wei L; Ma F Biosens Bioelectron; 2010 Oct; 26(2):470-6. PubMed ID: 20692154 [TBL] [Abstract][Full Text] [Related]
3. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Sun M; Mu ZX; Chen YP; Sheng GP; Liu XW; Chen YZ; Zhao Y; Wang HL; Yu HQ; Wei L; Ma F Environ Sci Technol; 2009 May; 43(9):3372-7. PubMed ID: 19534160 [TBL] [Abstract][Full Text] [Related]
4. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Lee DJ; Liu X; Weng HL Bioresour Technol; 2014 Mar; 156():14-9. PubMed ID: 24480414 [TBL] [Abstract][Full Text] [Related]
5. Microbial fuel cells for sulfide removal. Rabaey K; Van de Sompel K; Maignien L; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Pham HT; Vermeulen J; Verhaege M; Lens P; Verstraete W Environ Sci Technol; 2006 Sep; 40(17):5218-24. PubMed ID: 16999092 [TBL] [Abstract][Full Text] [Related]
6. Power production and wastewater treatment simultaneously by dual-chamber microbial fuel cell technique. Izadi P; Rahimnejad M; Ghoreyshi A Biotechnol Appl Biochem; 2015; 62(4):483-8. PubMed ID: 25640146 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Oh SE; Logan BE Water Res; 2005 Nov; 39(19):4673-82. PubMed ID: 16289673 [TBL] [Abstract][Full Text] [Related]
8. Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells. Arulmani SRB; Dai J; Li H; Chen Z; Sun W; Zhang H; Yan J; Kandasamy S; Xiao T Chemosphere; 2022 Mar; 291(Pt 1):132754. PubMed ID: 34798109 [TBL] [Abstract][Full Text] [Related]
9. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K; Okabe S Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637 [TBL] [Abstract][Full Text] [Related]
10. Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell. Kang CS; Eaktasang N; Kwon DY; Kim HS Bioresour Technol; 2014 Aug; 165():27-30. PubMed ID: 24751374 [TBL] [Abstract][Full Text] [Related]
11. Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode. Wu S; Zhang X; Lu P; Zhang D Chemosphere; 2022 Sep; 303(Pt 2):135128. PubMed ID: 35636600 [TBL] [Abstract][Full Text] [Related]
12. Copper recovery combined with electricity production in a microbial fuel cell. Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261 [TBL] [Abstract][Full Text] [Related]
13. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells. Tang X; Li H; Du Z; Ng HY Bioresour Technol; 2014 Jul; 164():184-8. PubMed ID: 24859209 [TBL] [Abstract][Full Text] [Related]
14. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Fu Q; Fukushima N; Maeda H; Sato K; Kobayashi H Biosci Biotechnol Biochem; 2015; 79(7):1200-6. PubMed ID: 25747034 [TBL] [Abstract][Full Text] [Related]
15. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. Sulonen ML; Kokko ME; Lakaniemi AM; Puhakka JA J Hazard Mater; 2015 Mar; 284():182-9. PubMed ID: 25463232 [TBL] [Abstract][Full Text] [Related]
16. Role of sulfur during acetate oxidation in biological anodes. Dutta PK; Keller J; Yuan Z; Rozendal RA; Rabaey K Environ Sci Technol; 2009 May; 43(10):3839-45. PubMed ID: 19544896 [TBL] [Abstract][Full Text] [Related]
17. Power production enhancement with a polyaniline modified anode in microbial fuel cells. Lai B; Tang X; Li H; Du Z; Liu X; Zhang Q Biosens Bioelectron; 2011 Oct; 28(1):373-7. PubMed ID: 21820889 [TBL] [Abstract][Full Text] [Related]
18. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness. Behera M; Ghangrekar MM Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843 [TBL] [Abstract][Full Text] [Related]
19. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater. Zhang L; Mao Y; Ma J; Li D; Shi H; Liu Y; Cai L Environ Technol; 2013; 34(1-4):269-74. PubMed ID: 23530340 [TBL] [Abstract][Full Text] [Related]
20. Treatment of Organic and Sulfate/Sulfide Contaminated Wastewater and Bioelectricity Generation by Sulfate-Reducing Bioreactor Coupling with Sulfide-Oxidizing Fuel Cell. Kieu TQH; Nguyen TY; Do CL Molecules; 2023 Aug; 28(17):. PubMed ID: 37687026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]