These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Two independent evolutionary routes to Na+/H+ cotransport function in membrane pyrophosphatases. Nordbo E; Luoto HH; Baykov AA; Lahti R; Malinen AM Biochem J; 2016 Oct; 473(19):3099-111. PubMed ID: 27487839 [TBL] [Abstract][Full Text] [Related]
9. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Kellosalo J; Kajander T; Kogan K; Pokharel K; Goldman A Science; 2012 Jul; 337(6093):473-6. PubMed ID: 22837527 [TBL] [Abstract][Full Text] [Related]
10. H+-pyrophosphatase of Rhodospirillum rubrum. High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation my mersalyl. Belogurov GA; Turkina MV; Penttinen A; Huopalahti S; Baykov AA; Lahti R J Biol Chem; 2002 Jun; 277(25):22209-14. PubMed ID: 11956221 [TBL] [Abstract][Full Text] [Related]
11. Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum. Malinen AM; Belogurov GA; Salminen M; Baykov AA; Lahti R J Biol Chem; 2004 Jun; 279(26):26811-6. PubMed ID: 15107429 [TBL] [Abstract][Full Text] [Related]
12. Biochemical, Structural and Physiological Characteristics of Vacuolar H+-Pyrophosphatase. Segami S; Asaoka M; Kinoshita S; Fukuda M; Nakanishi Y; Maeshima M Plant Cell Physiol; 2018 Jul; 59(7):1300-1308. PubMed ID: 29534212 [TBL] [Abstract][Full Text] [Related]
13. Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. Hsiao YY; Pan YJ; Hsu SH; Huang YT; Liu TH; Lee CH; Lee CH; Liu PF; Chang WC; Wang YK; Chien LF; Pan RL Biochim Biophys Acta; 2007 Jul; 1767(7):965-73. PubMed ID: 17543272 [TBL] [Abstract][Full Text] [Related]
14. Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Van RC; Pan YJ; Hsu SH; Huang YT; Hsiao YY; Pan RL Biochim Biophys Acta; 2005 Aug; 1709(1):84-94. PubMed ID: 16018964 [TBL] [Abstract][Full Text] [Related]
15. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target. Niu H; Zhu J; Qu Q; Zhou X; Huang X; Du Z Proteins; 2021 Jul; 89(7):853-865. PubMed ID: 33583053 [TBL] [Abstract][Full Text] [Related]
16. The Mechanism of Energy Coupling in H Baykov AA; Anashkin VA; Malinen AM; Bogachev AV Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012762 [TBL] [Abstract][Full Text] [Related]
17. Structure of inorganic pyrophosphatase from Helicobacter pylori. Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and characterization of a vacuolar H+₋pyrophosphatase from Dunaliella viridis. Meng X; Xu Z; Song R Mol Biol Rep; 2011 Jun; 38(5):3375-82. PubMed ID: 21086174 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Brini F; Gaxiola RA; Berkowitz GA; Masmoudi K Plant Physiol Biochem; 2005 Apr; 43(4):347-54. PubMed ID: 15907686 [TBL] [Abstract][Full Text] [Related]
20. Role of the potassium/lysine cationic center in catalysis and functional asymmetry in membrane-bound pyrophosphatases. Artukka E; Luoto HH; Baykov AA; Lahti R; Malinen AM Biochem J; 2018 Mar; 475(6):1141-1158. PubMed ID: 29519958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]