BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23297242)

  • 1. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater.
    Nakajima K; Tanaka A; Matsuda Y
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1767-72. PubMed ID: 23297242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple plasma membrane SLC4s contribute to external HCO3- acquisition during CO2 starvation in the marine diatom Phaeodactylum tricornutum.
    Nawaly H; Matsui H; Tsuji Y; Iwayama K; Ohashi H; Nakajima K; Matsuda Y
    J Exp Bot; 2023 Jan; 74(1):296-307. PubMed ID: 36124754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms.
    Tsuji Y; Nakajima K; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a CO
    Tsuji Y; Kusi-Appiah G; Kozai N; Fukuda Y; Yamano T; Fukuzawa H
    Mar Biotechnol (NY); 2021 Jun; 23(3):456-462. PubMed ID: 34109463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma Membrane-Type Aquaporins from Marine Diatoms Function as CO
    Matsui H; Hopkinson BM; Nakajima K; Matsuda Y
    Plant Physiol; 2018 Sep; 178(1):345-357. PubMed ID: 30076224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for K+-dependent HCO3- utilization in the marine diatom Phaeodactylum tricornutum.
    Chen X; Qiu CE; Shao JZ
    Plant Physiol; 2006 Jun; 141(2):731-6. PubMed ID: 16632589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction-dependent siderophore assimilation in a model pennate diatom.
    Coale TH; Moosburner M; Horák A; Oborník M; Barbeau KA; Allen AE
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23609-23617. PubMed ID: 31685631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated phosphate uptake by extracellular alkaline phosphatase and solute carrier transporters in marine diatoms.
    Matsui H; Harada H; Maeda K; Sugiyama T; Fukuchi Y; Kimura N; Nawaly H; Tsuji Y; Matsuda Y
    New Phytol; 2024 Feb; 241(3):1210-1221. PubMed ID: 38013640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversity of CO2-concentrating mechanisms in marine diatoms as inferred from their genetic content.
    Shen C; Dupont CL; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3937-3948. PubMed ID: 28510761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration.
    Matsuda Y; Nakajima K; Tachibana M
    Photosynth Res; 2011 Sep; 109(1-3):191-203. PubMed ID: 21287273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity.
    Yang G; Gao K
    Mar Environ Res; 2012 Aug; 79():142-51. PubMed ID: 22770534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom Phaeodactylum tricornutum at low inorganic carbon concentrations.
    Yu G; Nakajima K; Gruber A; Rio Bartulos C; Schober AF; Lepetit B; Yohannes E; Matsuda Y; Kroth PG
    New Phytol; 2022 Aug; 235(4):1379-1393. PubMed ID: 35596716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom.
    Reinfelder JR; Milligan AJ; Morel FM
    Plant Physiol; 2004 Aug; 135(4):2106-11. PubMed ID: 15286292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R; Dimnet L; Maberly SC; Gontero B
    New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.