These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23297242)

  • 21. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO
    Huang A; Wu S; Gu W; Li Y; Xie X; Wang G
    BMC Biotechnol; 2019 Jul; 19(1):53. PubMed ID: 31349823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y
    Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter.
    Romero MF; Henry D; Nelson S; Harte PJ; Dillon AK; Sciortino CM
    J Biol Chem; 2000 Aug; 275(32):24552-9. PubMed ID: 10827195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms.
    McGinn PJ; Morel FM
    Plant Physiol; 2008 Jan; 146(1):300-9. PubMed ID: 17993542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.
    Isensee K; Erez J; Stoll HM
    Physiol Plant; 2014 Feb; 150(2):321-38. PubMed ID: 23992373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bicarbonate transport and extracellular carbonic anhydrase in marine diatoms.
    Martin CL; Tortell PD
    Physiol Plant; 2008 May; 133(1):106-16. PubMed ID: 18298417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extra O
    Shimakawa G; Matsuda Y
    Photosynth Res; 2024 Jan; 159(1):61-68. PubMed ID: 38316719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria.
    Price GD; Woodger FJ; Badger MR; Howitt SM; Tucker L
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):18228-33. PubMed ID: 15596724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM; Dupont CL; Matsuda Y
    Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters.
    Sapriel G; Quinet M; Heijde M; Jourdren L; Tanty V; Luo G; Le Crom S; Lopez PJ
    PLoS One; 2009 Oct; 4(10):e7458. PubMed ID: 19829693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum.
    Satoh D; Hiraoka Y; Colman B; Matsuda Y
    Plant Physiol; 2001 Aug; 126(4):1459-70. PubMed ID: 11500545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA.
    Del Prete S; Vullo D; De Luca V; Supuran CT; Capasso C
    J Enzyme Inhib Med Chem; 2014 Dec; 29(6):906-11. PubMed ID: 24456295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism.
    Price GD
    Photosynth Res; 2011 Sep; 109(1-3):47-57. PubMed ID: 21359551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of H(+)-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis.
    Furla P; Allemand D; Orsenigo MN
    Am J Physiol Regul Integr Comp Physiol; 2000 Apr; 278(4):R870-81. PubMed ID: 10749774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry.
    Trimborn S; Lundholm N; Thoms S; Richter KU; Krock B; Hansen PJ; Rost B
    Physiol Plant; 2008 May; 133(1):92-105. PubMed ID: 18405335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey.
    McGinn PJ; Morel FM
    Physiol Plant; 2008 May; 133(1):78-91. PubMed ID: 18405334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
    Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL
    Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ocean acidification modulates expression of genes and physiological performance of a marine diatom.
    Li Y; Zhuang S; Wu Y; Ren H; Chen F; Lin X; Wang K; Beardall J; Gao K
    PLoS One; 2017; 12(2):e0170970. PubMed ID: 28192486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual role of CO2/HCO3(-) buffer in the regulation of intracellular pH of three-dimensional tumor growths.
    Hulikova A; Vaughan-Jones RD; Swietach P
    J Biol Chem; 2011 Apr; 286(16):13815-26. PubMed ID: 21345798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cu transport and complexation by the marine diatom Phaeodactylum tricornutum: Implications for trace metal complexation kinetics in the surface ocean.
    González-Dávila M; Maldonado MT; González AG; Guo J; González-Santana D; Martel A; Santana-Casiano JM
    Sci Total Environ; 2024 Apr; 919():170752. PubMed ID: 38340864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.