BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23297250)

  • 1. Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO4(2-), Cl- , NO3-) on Ni accumulation and toxicity in aquatic plant (Lemna minor L.): implications For Ni risk assessment.
    Gopalapillai Y; Hale B; Vigneault B
    Environ Toxicol Chem; 2013 Apr; 32(4):810-21. PubMed ID: 23297250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture.
    Li B; Zhang X; Wang X; Ma Y
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1760-6. PubMed ID: 19481262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model.
    Kozlova T; Wood CM; McGeer JC
    Aquat Toxicol; 2009 Feb; 91(3):221-8. PubMed ID: 19111357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents.
    Gopalapillai Y; Vigneault B; Hale BA
    Integr Environ Assess Manag; 2014 Oct; 10(4):493-7. PubMed ID: 25045146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation.
    Khellaf N; Zerdaoui M
    Ecotoxicology; 2010 Nov; 19(8):1363-8. PubMed ID: 20680456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models.
    Nys C; Janssen CR; Van Sprang P; De Schamphelaere KA
    Environ Toxicol Chem; 2016 May; 35(5):1097-106. PubMed ID: 26335781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-species extrapolation of chronic nickel Biotic Ligand Models.
    Schlekat CE; Van Genderen E; De Schamphelaere KA; Antunes PM; Rogevich EC; Stubblefield WA
    Sci Total Environ; 2010 Nov; 408(24):6148-57. PubMed ID: 20920817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of major cations and anions (Na+, K+, Ca2+, Cl-, and SO4(2-)) to a macrophyte and an alga.
    Simmons JA
    Environ Toxicol Chem; 2012 Jun; 31(6):1370-4. PubMed ID: 22447356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.
    Liu Y; Vijver MG; Peijnenburg WJ
    Ecotoxicology; 2014 Apr; 23(3):385-95. PubMed ID: 24510448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation.
    Appenroth KJ; Krech K; Keresztes A; Fischer W; Koloczek H
    Chemosphere; 2010 Jan; 78(3):216-23. PubMed ID: 19945735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
    Niyogi S; Wood CM
    Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling uptake and toxicity of nickel in solution to Enchytraeus crypticus with biotic ligand model theory.
    He E; Qiu H; Van Gestel CA
    Environ Pollut; 2014 May; 188():17-26. PubMed ID: 24531268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative ecotoxicity of single and binary mixtures exposures of nickel and zinc on growth and biomarkers of Lemna gibba.
    Martinez RS; Sáenz ME; Alberdi JL; Di Marzio WD
    Ecotoxicology; 2019 Aug; 28(6):686-697. PubMed ID: 31222581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L.
    Singh K; Pandey SN
    J Environ Biol; 2011 May; 32(3):391-4. PubMed ID: 22167955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L.
    Modlitbová P; Novotný K; Pořízka P; Klus J; Lubal P; Zlámalová-Gargošová H; Kaiser J
    Ecotoxicol Environ Saf; 2018 Jan; 147():334-341. PubMed ID: 28858706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous.
    Mufarrege MM; Hadad HR; Maine MA
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):53-61. PubMed ID: 19506937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel-induced changes in lipid peroxidation, antioxidative enzymes, and metal accumulation in Lemna gibba.
    Yilmaz DD; Parlak KU
    Int J Phytoremediation; 2011 Sep; 13(8):805-17. PubMed ID: 21972520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.