These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23297673)

  • 21. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.
    Ren FF; Ang KW; Ye J; Yu M; Lo GQ; Kwong DL
    Nano Lett; 2011 Mar; 11(3):1289-93. PubMed ID: 21306111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synchronously wired infrared antennas for resonant single-quantum-well photodetection up to room temperature.
    Miyazaki HT; Mano T; Kasaya T; Osato H; Watanabe K; Sugimoto Y; Kawazu T; Arai Y; Shigetou A; Ochiai T; Jimba Y; Miyazaki H
    Nat Commun; 2020 Jan; 11(1):565. PubMed ID: 31992712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks.
    Kim BS; Shin KY; Pyo JB; Lee J; Son JG; Lee SS; Park JH
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2582-90. PubMed ID: 26760896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alloying: A Platform for Metallic Materials with On-Demand Optical Response.
    Rebello Sousa Dias M; Leite MS
    Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering light absorption in semiconductor nanowire devices.
    Cao L; White JS; Park JS; Schuller JA; Clemens BM; Brongersma ML
    Nat Mater; 2009 Aug; 8(8):643-7. PubMed ID: 19578337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semiconductor nanowire optical antenna solar absorbers.
    Cao L; Fan P; Vasudev AP; White JS; Yu Z; Cai W; Schuller JA; Fan S; Brongersma ML
    Nano Lett; 2010 Feb; 10(2):439-45. PubMed ID: 20078065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-semiconductor plasmonic nanoantennas for infrared sensing.
    Law S; Yu L; Rosenberg A; Wasserman D
    Nano Lett; 2013 Sep; 13(9):4569-74. PubMed ID: 23987983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. InAs-Nanowire-Based Broadband Ultrafast Optical Switch.
    Liu J; Khayrudinov V; Yang H; Sun Y; Matveev B; Remennyi M; Yang K; Haggren T; Lipsanen H; Wang F; Zhang B; He J
    J Phys Chem Lett; 2019 Aug; 10(15):4429-4436. PubMed ID: 31317748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aluminum Cayley trees as scalable, broadband, multiresonant optical antennas.
    Simon T; Li X; Martin J; Khlopin D; Stéphan O; Kociak M; Gérard D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable optical antennas enabled by the phase transition in vanadium dioxide.
    Earl SK; James TD; Davis TJ; McCallum JC; Marvel RE; Haglund RF; Roberts A
    Opt Express; 2013 Nov; 21(22):27503-8. PubMed ID: 24216970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct-tuning methods for semiconductor metamaterials.
    Min L; Wang W; Huang L; Ling Y; Liu T; Liu J; Luo C; Zeng Q
    Sci Rep; 2019 Nov; 9(1):17622. PubMed ID: 31772241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High performance broadband photodetector using fabricated nanowires of bismuth selenide.
    Sharma A; Bhattacharyya B; Srivastava AK; Senguttuvan TD; Husale S
    Sci Rep; 2016 Jan; 6():19138. PubMed ID: 26751499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.
    Fan JR; Wu WG; Chen ZJ; Zhu J; Li J
    Nanoscale; 2017 Mar; 9(10):3416-3423. PubMed ID: 28009895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems.
    He Z; Li Z; Li C; Xue W; Cui W
    Opt Express; 2020 Jun; 28(12):17595-17610. PubMed ID: 32679965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors.
    Zheng D; Wang J; Hu W; Liao L; Fang H; Guo N; Wang P; Gong F; Wang X; Fan Z; Wu X; Meng X; Chen X; Lu W
    Nano Lett; 2016 Apr; 16(4):2548-55. PubMed ID: 26985983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires.
    Choi JS; Kim KH; No YS
    Opt Express; 2017 Sep; 25(19):22750-22759. PubMed ID: 29041581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rainbow radiating single-crystal Ag nanowire nanoantenna.
    Kang T; Choi W; Yoon I; Lee H; Seo MK; Park QH; Kim B
    Nano Lett; 2012 May; 12(5):2331-6. PubMed ID: 22494414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic self-absorption.
    Liu X; Zhang Q; Xiong Q; Sum TC
    Nano Lett; 2013 Mar; 13(3):1080-5. PubMed ID: 23394432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.
    Li T; Hu X; Chen H; Zhao C; Xu Y; Wei X; Song G
    Opt Express; 2017 Oct; 25(20):23597-23604. PubMed ID: 29041311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.