BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 23297740)

  • 1. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.
    Cao YY; Ouyang G; Wang CX; Yang GW
    Nano Lett; 2013 Feb; 13(2):436-43. PubMed ID: 23297740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial modulation doping in core-shell nanowires.
    Dillen DC; Kim K; Liu ES; Tutuc E
    Nat Nanotechnol; 2014 Feb; 9(2):116-20. PubMed ID: 24441982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.
    Lin YC; Kim D; Li Z; Nguyen BM; Li N; Zhang S; Yoo J
    Nanoscale; 2017 Jan; 9(3):1213-1220. PubMed ID: 28050613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires.
    Dayeh SA; Tang W; Boioli F; Kavanagh KL; Zheng H; Wang J; Mack NH; Swadener G; Huang JY; Miglio L; Tu KN; Picraux ST
    Nano Lett; 2013 May; 13(5):1869-76. PubMed ID: 23030346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001).
    Wang JH; Wang T; Zhang JJ
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diameter-independent hole mobility in Ge/Si core/shell nanowire field effect transistors.
    Nguyen BM; Taur Y; Picraux ST; Dayeh SA
    Nano Lett; 2014 Feb; 14(2):585-91. PubMed ID: 24382113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.
    Mankin MN; Day RW; Gao R; No YS; Kim SK; McClelland AA; Bell DC; Park HG; Lieber CM
    Nano Lett; 2015 Jul; 15(7):4776-82. PubMed ID: 26057208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell.
    Guan X; Becdelievre J; Benali A; Botella C; Grenet G; Regreny P; Chauvin N; Blanchard NP; Jaurand X; Saint-Girons G; Bachelet R; Gendry M; Penuelas J
    Nanoscale; 2016 Aug; 8(34):15637-44. PubMed ID: 27513669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires.
    Zhang X; Jevasuwan W; Sugimoto Y; Fukata N
    ACS Nano; 2019 Nov; 13(11):13403-13412. PubMed ID: 31626528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology of epitaxial core-shell nanowires.
    Wang H; Upmanyu M; Ciobanu CV
    Nano Lett; 2008 Dec; 8(12):4305-11. PubMed ID: 19367801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed-dimensional InAs nanowire on layered molybdenum disulfide heterostructures
    Baboli MA; Abrand A; Burke RA; Fedorenko A; Wilhelm TS; Polly SJ; Dubey M; Hubbard SM; Mohseni PK
    Nanoscale Adv; 2021 May; 3(10):2802-2811. PubMed ID: 36134188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial core-shell and core-multishell nanowire heterostructures.
    Lauhon LJ; Gudiksen MS; Wang D; Lieber CM
    Nature; 2002 Nov; 420(6911):57-61. PubMed ID: 12422212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of Stranski-Krastanov growth on the surface of nanowires.
    Li X; Yang G
    Nanotechnology; 2014 Oct; 25(43):435605. PubMed ID: 25299567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.
    Haggren T; Perros AP; Jiang H; Huhtio T; Kakko JP; Dhaka V; Kauppinen E; Lipsanen H
    Nanotechnology; 2016 Jul; 27(27):275603. PubMed ID: 27242347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-impurity scattering and carrier mobility in doped Ge/Si core-shell nanowires.
    Lee H; Choi HJ
    Nano Lett; 2010 Jun; 10(6):2207-10. PubMed ID: 20499894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.
    Day RW; Mankin MN; Lieber CM
    Nano Lett; 2016 Apr; 16(4):2830-6. PubMed ID: 26929996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of Si/Ge core/shell nanowire heterostructures during lithiation and delithiation at 0.8 and 20 A g
    Kim D; Li N; Sheehan CJ; Yoo J
    Nanoscale; 2018 Apr; 10(16):7343-7351. PubMed ID: 29664494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core-Shell Nanowires.
    Fukata N; Yu M; Jevasuwan W; Takei T; Bando Y; Wu W; Wang ZL
    ACS Nano; 2015 Dec; 9(12):12182-8. PubMed ID: 26554299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.
    Dillen DC; Wen F; Kim K; Tutuc E
    Nano Lett; 2016 Jan; 16(1):392-8. PubMed ID: 26606651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Transparent Contacts to the 1D Hole Gas in Ultrascaled Ge/Si Core/Shell Nanowires.
    Sistani M; Delaforce J; Kramer RBG; Roch N; Luong MA; den Hertog MI; Robin E; Smoliner J; Yao J; Lieber CM; Naud C; Lugstein A; Buisson O
    ACS Nano; 2019 Dec; 13(12):14145-14151. PubMed ID: 31816231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.