These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23297761)

  • 21. Decay processes of long-lived phonons in 6H-SiC.
    Pshenay-Severin DA; Adamov RB; Vinnichenko MY; Moldavskaya MD; Shalygin VA
    J Phys Condens Matter; 2023 Mar; 35(17):. PubMed ID: 36764000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron-phonon scattering and mean free paths in D-carbon.
    Bu X; Wang S
    Phys Chem Chem Phys; 2020 Feb; 22(7):4010-4014. PubMed ID: 32022043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonant coherent phonon generation in single-walled carbon nanotubes through near-band-edge excitation.
    Lim YS; Ahn JG; Kim JH; Yee KJ; Joo T; Baik SH; Hároz EH; Booshehri LG; Kono J
    ACS Nano; 2010 Jun; 4(6):3222-6. PubMed ID: 20469843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman active phonons of identified semiconducting single-walled carbon nanotubes.
    Paillet M; Michel T; Meyer JC; Popov VN; Henrard L; Roth S; Sauvajol JL
    Phys Rev Lett; 2006 Jun; 96(25):257401. PubMed ID: 16907341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the electron-phonon coupling of individual single-walled carbon nanotubes.
    Oron-Carl M; Hennrich F; Kappes MM; Löhneysen HV; Krupke R
    Nano Lett; 2005 Sep; 5(9):1761-7. PubMed ID: 16159220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low bias electron scattering in structure-identified single wall carbon nanotubes: role of substrate polar phonons.
    Chandra B; Perebeinos V; Berciaud S; Katoch J; Ishigami M; Kim P; Heinz TF; Hone J
    Phys Rev Lett; 2011 Sep; 107(14):146601. PubMed ID: 22107221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors.
    Zhou X; Park JY; Huang S; Liu J; McEuen PL
    Phys Rev Lett; 2005 Sep; 95(14):146805. PubMed ID: 16241684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stokes and anti-Stokes Raman scattering in mono- and bilayer graphene.
    Cong X; Wu JB; Lin ML; Liu XL; Shi W; Venezuela P; Tan PH
    Nanoscale; 2018 Aug; 10(34):16138-16144. PubMed ID: 30117506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene.
    Essig S; Marquardt CW; Vijayaraghavan A; Ganzhorn M; Dehm S; Hennrich F; Ou F; Green AA; Sciascia C; Bonaccorso F; Bohnen KP; Löhneysen Hv; Kappes MM; Ajayan PM; Hersam MC; Ferrari AC; Krupke R
    Nano Lett; 2010 May; 10(5):1589-94. PubMed ID: 20405819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of bundling on the G' Raman band of single-walled carbon nanotubes.
    Cardenas JF; Gromov A
    Nanotechnology; 2009 Nov; 20(46):465703. PubMed ID: 19843989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman spectroscopic characterization of single walled carbon nanotubes: influence of the sample aggregation state.
    López-Lorente AI; Simonet BM; Valcárcel M
    Analyst; 2014 Jan; 139(1):290-8. PubMed ID: 24255912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy.
    Yang JA; Parham S; Dessau D; Reznik D
    Sci Rep; 2017 Jan; 7():40876. PubMed ID: 28102368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiphonon Raman scattering from individual single-walled carbon nanotubes.
    Wang F; Liu W; Wu Y; Sfeir MY; Huang L; Hone J; O'Brien S; Brus LE; Heinz TF; Shen YR
    Phys Rev Lett; 2007 Jan; 98(4):047402. PubMed ID: 17358810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-Resolved Coherent Anti-Stokes Raman Scattering of Graphene: Dephasing Dynamics of Optical Phonon.
    Koivistoinen J; Myllyperkiö P; Pettersson M
    J Phys Chem Lett; 2017 Sep; 8(17):4108-4112. PubMed ID: 28809496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes.
    Hagen A; Steiner M; Raschke MB; Lienau C; Hertel T; Qian H; Meixner AJ; Hartschuh A
    Phys Rev Lett; 2005 Nov; 95(19):197401. PubMed ID: 16384021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.