These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23297894)

  • 1. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.
    Romano PQ; Conlon SC; Smith EC
    J Acoust Soc Am; 2013 Jan; 133(1):186-200. PubMed ID: 23297894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airframe structural damage detection: a non-linear structural surface intensity based technique.
    Semperlotti F; Conlon SC; Barnard AR
    J Acoust Soc Am; 2011 Apr; 129(4):EL121-7. PubMed ID: 21476618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteretic nonlinearity analysis in damaged composite plates using guided waves.
    Baccouche Y; Bentahar M; Mechri C; El Guerjouma R; Hédi Ben Ghozlen M
    J Acoust Soc Am; 2013 Apr; 133(4):EL256-61. PubMed ID: 23556688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-accuracy acoustic detection of nonclassical component of material nonlinearity.
    Haupert S; Renaud G; Rivière J; Talmant M; Johnson PA; Laugier P
    J Acoust Soc Am; 2011 Nov; 130(5):2654-61. PubMed ID: 22087892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy.
    Le Bas PY; Ulrich TJ; Anderson BE; Guyer RA; Johnson PA
    J Acoust Soc Am; 2011 Oct; 130(4):EL258-63. PubMed ID: 21974501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment.
    Zhao X; Geng Q; Li Y
    J Acoust Soc Am; 2013 Mar; 133(3):1433-42. PubMed ID: 23464015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.
    Bodén H
    J Acoust Soc Am; 2011 Nov; 130(5):2639-47. PubMed ID: 22087890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental verification of transient nonlinear acoustical holography.
    Jing Y; Cannata J; Wang T
    J Acoust Soc Am; 2013 May; 133(5):2533-40. PubMed ID: 23654362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop control of flow-induced sound in a flow duct with downstream resonant cavities.
    Lu ZB; Halim D; Cheng L
    J Acoust Soc Am; 2013 Mar; 133(3):1468-79. PubMed ID: 23464018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of flow induced sound and vibration of periodically stiffened plates.
    Maxit L; Denis V
    J Acoust Soc Am; 2013 Jan; 133(1):146-60. PubMed ID: 23297891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated damage identification technique based on vibration and wave propagation data.
    Mal A; Banerjee S; Ricci F
    Philos Trans A Math Phys Eng Sci; 2007 Feb; 365(1851):479-91. PubMed ID: 17255048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound radiation from a fluid-loaded infinite plate with a patch.
    Zhang Y; Pan J
    J Acoust Soc Am; 2013 Jan; 133(1):161-72. PubMed ID: 23297892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental study of the nonlinear resonance vibration of cementitious materials with an application to damage characterization.
    Chen J; Kim JY; Kurtis KE; Jacobs LJ
    J Acoust Soc Am; 2011 Nov; 130(5):2728-37. PubMed ID: 22087901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental implementation of reverse time migration for nondestructive evaluation applications.
    Anderson BE; Griffa M; Bas PY; Ulrich TJ; Johnson PA
    J Acoust Soc Am; 2011 Jan; 129(1):EL8-14. PubMed ID: 21302980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field shock formation in noise propagation from a high-power jet aircraft.
    Gee KL; Neilsen TB; Downing JM; James MM; McKinley RL; McKinley RC; Wall AT
    J Acoust Soc Am; 2013 Feb; 133(2):EL88-93. PubMed ID: 23363199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear modulation of Lamb modes by clapping delamination.
    Shkerdin G; Glorieux C
    J Acoust Soc Am; 2008 Dec; 124(6):3397-409. PubMed ID: 19206768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves.
    Katsnelson B; Grigorev V; Lynch JF
    J Acoust Soc Am; 2008 Sep; 124(3):EL78-84. PubMed ID: 19045566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear guided wave propagation in prestressed plates.
    Pau A; Lanza di Scalea F
    J Acoust Soc Am; 2015 Mar; 137(3):1529-40. PubMed ID: 25786963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.
    Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven matched field processing for Lamb wave structural health monitoring.
    Harley JB; Moura JM
    J Acoust Soc Am; 2014 Mar; 135(3):1231-44. PubMed ID: 24606265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.