BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23297902)

  • 1. Joint entropy of continuously differentiable ultrasonic waveforms.
    Hughes MS; McCarthy JE; Marsh JN; Wickline SA
    J Acoust Soc Am; 2013 Jan; 133(1):283-300. PubMed ID: 23297902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additional results for "joint entropy of continuously differentiable ultrasonic waveforms" [J. Acoust. Soc. Am. 133(1), 283-300 (2013)].
    Hughes MS; Marsh JN; Wickline SA; McCarthy JE
    J Acoust Soc Am; 2015 Jan; 137(1):501. PubMed ID: 25618079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved signal processing to detect cancer by ultrasonic molecular imaging of targeted nanoparticles.
    Hughes M; Marsh J; Lanza G; Wickline S; McCarthy J; Wickerhauser V; Maurizi B; Wallace K
    J Acoust Soc Am; 2011 Jun; 129(6):3756-67. PubMed ID: 21682399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a real-time, calculable limiting form of the Renyi entropy for molecular imaging of tumors.
    Marsh JN; Wallace KD; McCarthy JE; Wickerhauser MV; Maurizi BN; Lanza GM; Wickline SA; Hughes MS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1890-5. PubMed ID: 20679020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of digital waveforms using thermodynamic analogs: detection of contrast-targeted tissue in vivo.
    Hughes MS; Marsh JN; Zhang H; Woodson AK; Allen JS; Lacy EK; Carradine C; Lanza GM; Wickline SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1609-16. PubMed ID: 16964911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of incoherent and coherent backscattered wave fields from cavities in a solid matrix.
    Pinfield VJ; Challis RE
    J Acoust Soc Am; 2012 Dec; 132(6):3760-9. PubMed ID: 23231106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A backscatter difference technique for ultrasonic bone assessment.
    Hoffmeister BK; Wilson AR; Gilbert MJ; Sellers ME
    J Acoust Soc Am; 2012 Dec; 132(6):4069-76. PubMed ID: 23231136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.
    Sharma GK; Kumar A; Jayakumar T; Purnachandra Rao B; Mariyappa N
    Ultrasonics; 2015 Mar; 57():167-78. PubMed ID: 25488024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time calculation of a limiting form of the Renyi entropy applied to detection of subtle changes in scattering architecture.
    Hughes MS; McCarthy JE; Wickerhauser MV; Marsh JN; Arbeit JM; Fuhrhop RW; Wallace KD; Thomas T; Smith J; Agyem K; Lanza GM; Wickline SA
    J Acoust Soc Am; 2009 Nov; 126(5):2350-8. PubMed ID: 19894818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clutter depth discrimination using the wavenumber spectrum.
    Benjamin Reeder D
    J Acoust Soc Am; 2014 Jan; 135(1):EL1-7. PubMed ID: 24437850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic attenuation and speed of sound of cornstarch suspensions.
    Johnson BL; Holland MR; Miller JG; Katz JI
    J Acoust Soc Am; 2013 Mar; 133(3):1399-403. PubMed ID: 23464011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local ultrasonic wave velocities in trabeculae measured by micro-Brillouin scattering.
    Tsubota R; Fukui K; Matsukawa M
    J Acoust Soc Am; 2014 Feb; 135(2):EL109-14. PubMed ID: 25234913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast--an experimental study.
    Guillermin R; Lasaygues P; Rabau G; Lefebvre JP
    J Acoust Soc Am; 2013 Aug; 134(2):1001-10. PubMed ID: 23927099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms.
    Franceschini E; Guillermin R
    J Acoust Soc Am; 2012 Dec; 132(6):3735-47. PubMed ID: 23231104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of an entropy-based signal receiver with an application to ultrasonic molecular imaging.
    Hughes MS; McCarthy JE; Marsh JN; Arbeit JM; Neumann RG; Fuhrhop RW; Wallace KD; Znidersic DR; Maurizi BN; Baldwin SL; Lanza GM; Wickline SA
    J Acoust Soc Am; 2007 Jun; 121(6):3542-57. PubMed ID: 17552706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Range discrimination in ultrasonic vibrometry: theory and experiment.
    Martin JS; Rogers PH; Gray MD
    J Acoust Soc Am; 2011 Sep; 130(3):1735-47. PubMed ID: 21895110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of ultrasonic enhancement with a site-targeted contrast agent.
    Hall CS; Marsh JN; Scott MJ; Gaffney PJ; Wickline SA; Lanza GM
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1677-84. PubMed ID: 11572376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the time reversal operator for a scatterer undergoing small displacements.
    Philippe FD; Prada C; Fink M; Garnier J; de Rosny J
    J Acoust Soc Am; 2013 Jan; 133(1):94-107. PubMed ID: 23297886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.