These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23297922)

  • 1. Using Zebra-speech to study sequential and simultaneous speech segregation in a cochlear-implant simulation.
    Gaudrain E; Carlyon RP
    J Acoust Soc Am; 2013 Jan; 133(1):502-18. PubMed ID: 23297922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.
    Oxenham AJ; Kreft HA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers.
    Qin MK; Oxenham AJ
    J Acoust Soc Am; 2003 Jul; 114(1):446-54. PubMed ID: 12880055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of onset enhancement for increased speech intelligibility in auditory prostheses.
    Koning R; Wouters J
    J Acoust Soc Am; 2012 Oct; 132(4):2569-81. PubMed ID: 23039450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.
    Başkent D; Chatterjee M
    Hear Res; 2010 Dec; 270(1-2):127-33. PubMed ID: 20817081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise.
    Aronoff JM; Freed DJ; Fisher LM; Pal I; Soli SD
    Ear Hear; 2011; 32(4):468-84. PubMed ID: 21412155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-carrier processing to convey temporal fine structure cues: Implications for cochlear implants.
    Apoux F; Youngdahl CL; Yoho SE; Healy EW
    J Acoust Soc Am; 2015 Sep; 138(3):1469-80. PubMed ID: 26428784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening.
    Ihlefeld A; Litovsky RY
    PLoS One; 2012; 7(9):e45296. PubMed ID: 23028914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal and Spectral Degradation Effects on Speech and Emotion Recognition in Adult Listeners.
    Ritter C; Vongpaisal T
    Trends Hear; 2018; 22():2331216518804966. PubMed ID: 30378469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precedence based speech segregation in bilateral cochlear implant users.
    Hossain S; Montazeri V; Assmann PF; Litovsky RY
    J Acoust Soc Am; 2015 Dec; 138(6):EL545-50. PubMed ID: 26723365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Masking release and the contribution of obstruent consonants on speech recognition in noise by cochlear implant users.
    Li N; Loizou PC
    J Acoust Soc Am; 2010 Sep; 128(3):1262-71. PubMed ID: 20815461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss.
    Fogerty D; Ahlstrom JB; Bologna WJ; Dubno JR
    J Acoust Soc Am; 2015 Jun; 137(6):3487-501. PubMed ID: 26093436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.
    Li X; Nie K; Imennov NS; Won JH; Drennan WR; Rubinstein JT; Atlas LE
    J Acoust Soc Am; 2012 Nov; 132(5):3387-98. PubMed ID: 23145619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.