These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23298024)

  • 1. The flexible nature of exchange, correlation, and Hartree physics: resolving "delocalization" errors in a "correlation free" density functional.
    Gould T; Dobson JF
    J Chem Phys; 2013 Jan; 138(1):014103. PubMed ID: 23298024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory investigation of the polarizability and second hyperpolarizability of polydiacetylene and polybutatriene chains: treatment of exact exchange and role of correlation.
    Champagne B; Bulat FA; Yang W; Bonness S; Kirtman B
    J Chem Phys; 2006 Nov; 125(19):194114. PubMed ID: 17129096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional.
    Hesselmann A; Görling A
    Phys Rev Lett; 2011 Mar; 106(9):093001. PubMed ID: 21405619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.
    Bleiziffer P; Schmidtel D; Görling A
    J Chem Phys; 2014 Nov; 141(20):204107. PubMed ID: 25429933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extension of the KLI approximation toward the exact optimized effective potential.
    Iafrate GJ; Krieger JB
    J Chem Phys; 2013 Mar; 138(9):094104. PubMed ID: 23485274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond time-dependent exact exchange: the need for long-range correlation.
    Bruneval F; Sottile F; Olevano V; Reining L
    J Chem Phys; 2006 Apr; 124(14):144113. PubMed ID: 16626186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital-dependent correlation energy in density-functional theory based on a second-order perturbation approach: success and failure.
    Mori-Sánchez P; Wu Q; Yang W
    J Chem Phys; 2005 Aug; 123(6):62204. PubMed ID: 16122290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation energy functional and potential from time-dependent exact-exchange theory.
    Hellgren M; von Barth U
    J Chem Phys; 2010 Jan; 132(4):044101. PubMed ID: 20113013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discontinuous nature of the exchange-correlation functional in strongly correlated systems.
    Mori-Sánchez P; Cohen AJ; Yang W
    Phys Rev Lett; 2009 Feb; 102(6):066403. PubMed ID: 19257614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first-principles study of weakly bound molecules using exact exchange and the random phase approximation.
    Nguyen HV; Galli G
    J Chem Phys; 2010 Jan; 132(4):044109. PubMed ID: 20113021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second-order unconstrained optimization method for canonical-ensemble density-functional methods.
    Nygaard CR; Olsen J
    J Chem Phys; 2013 Mar; 138(9):094109. PubMed ID: 23485279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piecewise linearity of approximate density functionals revisited: implications for frontier orbital energies.
    Kraisler E; Kronik L
    Phys Rev Lett; 2013 Mar; 110(12):126403. PubMed ID: 25166825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The exchange-correlation potential in ab initio density functional theory.
    Bartlett RJ; Grabowski I; Hirata S; Ivanov S
    J Chem Phys; 2005 Jan; 122(3):34104. PubMed ID: 15740189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional spins and static correlation error in density functional theory.
    Cohen AJ; Mori-Sánchez P; Yang W
    J Chem Phys; 2008 Sep; 129(12):121104. PubMed ID: 19044996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic energy gradients of the optimized effective potential method.
    Wu Q; Cohen AJ; Yang W
    J Chem Phys; 2005 Oct; 123(13):134111. PubMed ID: 16223279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature and Frontier Orbital Energies in Density Functional Theory.
    Stein T; Autschbach J; Govind N; Kronik L; Baer R
    J Phys Chem Lett; 2012 Dec; 3(24):3740-4. PubMed ID: 26291104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kohn-Sham band gaps and potentials of solids from the optimised effective potential method within the random phase approximation.
    Klimeš J; Kresse G
    J Chem Phys; 2014 Feb; 140(5):054516. PubMed ID: 24511961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation potentials for molecular bond dissociation within the self-consistent random phase approximation.
    Hellgren M; Rohr DR; Gross EK
    J Chem Phys; 2012 Jan; 136(3):034106. PubMed ID: 22280743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.