These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23298030)

  • 1. Electron affinities and ionisation potentials for atoms via "benchmark" tdDFT calculations with and without exchange kernels.
    Gould T; Dobson JF
    J Chem Phys; 2013 Jan; 138(1):014109. PubMed ID: 23298030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Beyond the random phase approximation on the cheap: improved correlation energies with the efficient "radial exchange hole" kernel.
    Gould T
    J Chem Phys; 2012 Sep; 137(11):111101. PubMed ID: 22998242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark tests and spin adaptation for the particle-particle random phase approximation.
    Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W
    J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem.
    Tkatchenko A; Ambrosetti A; DiStasio RA
    J Chem Phys; 2013 Feb; 138(7):074106. PubMed ID: 23444996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tension between predicting accurate ground state correlation energies and excitation energies from adiabatic approximations in TDDFT.
    Everhart LM; Derteano JA; Bates JE
    J Chem Phys; 2022 Feb; 156(8):084116. PubMed ID: 35232189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond.
    Verma P; Bartlett RJ
    J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Short-Range Behavior of Correlated Pair Functions from the Adiabatic-Connection Fluctuation-Dissipation Theorem of Density-Functional Theory.
    Heßelmann A; Görling A
    J Chem Theory Comput; 2013 Oct; 9(10):4382-95. PubMed ID: 26589155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems.
    Lu D
    J Chem Phys; 2014 May; 140(18):18A520. PubMed ID: 24832328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-The renormalized ALDA and electron gas kernels.
    Patrick CE; Thygesen KS
    J Chem Phys; 2015 Sep; 143(10):102802. PubMed ID: 26373995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RPA Atomization Energy Puzzle.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Theory Comput; 2010 Jan; 6(1):127-34. PubMed ID: 26614325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism.
    Beuerle M; Graf D; Schurkus HF; Ochsenfeld C
    J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.
    Isegawa M; Truhlar DG
    J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strengths and limitations of the adiabatic exact-exchange kernel for total energy calculations.
    Hellgren M; Baguet L
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions.
    Zhu W; Toulouse J; Savin A; Angyán JG
    J Chem Phys; 2010 Jun; 132(24):244108. PubMed ID: 20590182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.