These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 23298030)
21. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation. van Aggelen H; Yang Y; Yang W J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319 [TBL] [Abstract][Full Text] [Related]
22. Random phase approximation with second-order screened exchange for current-carrying atomic states. Zhu W; Zhang L; Trickey SB J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916 [TBL] [Abstract][Full Text] [Related]
23. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel. Dixit A; Ángyán JG; Rocca D J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249 [TBL] [Abstract][Full Text] [Related]
24. Optimized Slater-type basis sets for the elements 1-118. Van Lenthe E; Baerends EJ J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913 [TBL] [Abstract][Full Text] [Related]
25. Insights into the spurious long-range nature of local r-dependent non-local exchange-correlation kernels. Lu D J Chem Phys; 2016 Aug; 145(5):054121. PubMed ID: 27497553 [TBL] [Abstract][Full Text] [Related]
26. Lieb-Oxford bound and pair correlation functions for density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem. Erhard J; Fauser S; Kalaß S; Moerman E; Trushin E; Görling A Faraday Discuss; 2020 Dec; 224(0):79-97. PubMed ID: 32935700 [TBL] [Abstract][Full Text] [Related]
27. Describing static correlation in bond dissociation by Kohn-Sham density functional theory. Fuchs M; Niquet YM; Gonze X; Burke K J Chem Phys; 2005 Mar; 122(9):094116. PubMed ID: 15836121 [TBL] [Abstract][Full Text] [Related]
28. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies. Yang Y; Peng D; Lu J; Yang W J Chem Phys; 2014 Sep; 141(12):124104. PubMed ID: 25273409 [TBL] [Abstract][Full Text] [Related]
30. A simple but fully nonlocal correction to the random phase approximation. Ruzsinszky A; Perdew JP; Csonka GI J Chem Phys; 2011 Mar; 134(11):114110. PubMed ID: 21428610 [TBL] [Abstract][Full Text] [Related]
31. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem. Bleiziffer P; Schmidtel D; Görling A J Chem Phys; 2014 Nov; 141(20):204107. PubMed ID: 25429933 [TBL] [Abstract][Full Text] [Related]
32. Self-Interaction-Corrected Random Phase Approximation. Ruan S; Ren X; Gould T; Ruzsinszky A J Chem Theory Comput; 2021 Apr; 17(4):2107-2115. PubMed ID: 33689324 [TBL] [Abstract][Full Text] [Related]
33. Short-range second order screened exchange correction to RPA correlation energies. Beuerle M; Ochsenfeld C J Chem Phys; 2017 Nov; 147(20):204107. PubMed ID: 29195276 [TBL] [Abstract][Full Text] [Related]
34. What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange-Correlation Potentials and Approximate Kernels? Kaur J; Ospadov E; Staroverov VN J Chem Theory Comput; 2019 Sep; 15(9):4956-4964. PubMed ID: 31386366 [TBL] [Abstract][Full Text] [Related]
35. Correct description of the bond dissociation limit without breaking spin symmetry by a random-phase-approximation correlation functional. Hesselmann A; Görling A Phys Rev Lett; 2011 Mar; 106(9):093001. PubMed ID: 21405619 [TBL] [Abstract][Full Text] [Related]
36. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. Grimme S J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631 [TBL] [Abstract][Full Text] [Related]
37. Making the random phase approximation to electronic correlation accurate. Grüneis A; Marsman M; Harl J; Schimka L; Kresse G J Chem Phys; 2009 Oct; 131(15):154115. PubMed ID: 20568855 [TBL] [Abstract][Full Text] [Related]
38. Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach. Ángyán JG; Liu RF; Toulouse J; Jansen G J Chem Theory Comput; 2011 Oct; 7(10):3116-30. PubMed ID: 26598155 [TBL] [Abstract][Full Text] [Related]
39. A first-principles study of weakly bound molecules using exact exchange and the random phase approximation. Nguyen HV; Galli G J Chem Phys; 2010 Jan; 132(4):044109. PubMed ID: 20113021 [TBL] [Abstract][Full Text] [Related]
40. Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. Gritsenko O; Baerends EJ J Chem Phys; 2004 Jul; 121(2):655-60. PubMed ID: 15260591 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]