BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23298093)

  • 1. A digitally reconstructed radiograph algorithm calculated from first principles.
    Staub D; Murphy MJ
    Med Phys; 2013 Jan; 40(1):011902. PubMed ID: 23298093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WE-G-217BCD-09: Calibration of a DRR Algorithm.
    Staub D; Sampson A; Williamson J; Murphy M
    Med Phys; 2012 Jun; 39(6Part28):3974. PubMed ID: 28519654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a cone-beam CT image via forward iterative projection matching.
    Brock RS; Docef A; Murphy MJ
    Med Phys; 2010 Dec; 37(12):6212-20. PubMed ID: 21302778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A GPU tool for efficient, accurate, and realistic simulation of cone beam CT projections.
    Jia X; Yan H; Cervino L; Folkerts M; Jiang SB
    Med Phys; 2012 Dec; 39(12):7368-78. PubMed ID: 23231286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.
    Reitz I; Hesse BM; Nill S; Tücking T; Oelfke U
    Z Med Phys; 2009; 19(3):158-72. PubMed ID: 19761093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling of bowtie and object effects for beam hardening and scatter artefact reduction in iterative cone-beam CT.
    Cai M; Byrne M; Archibald-Heeren B; Metcalfe P; Rosenfeld A; Wang Y
    Phys Eng Sci Med; 2020 Dec; 43(4):1161-1170. PubMed ID: 32813233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2015 Jan; 42(1):54-68. PubMed ID: 25563247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local filtration based scatter correction for cone-beam CT using primary modulation.
    Zhu L
    Med Phys; 2016 Nov; 43(11):6199. PubMed ID: 27806607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system.
    Lazos D; Williamson JF
    Med Phys; 2012 Sep; 39(9):5639-51. PubMed ID: 22957630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume-of-interest cone-beam CT using a 2.35 MV beam generated with a carbon target.
    Robar JL; Parsons D; Berman A; Macdonald A
    Med Phys; 2012 Jul; 39(7):4209-18. PubMed ID: 22830754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part II: System modeling, scatter correction, and optimization.
    Wang A; Maslowski A; Messmer P; Lehmann M; Strzelecki A; Yu E; Paysan P; Brehm M; Munro P; Star-Lack J; Seghers D
    Med Phys; 2018 May; 45(5):1914-1925. PubMed ID: 29509973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm.
    Thing RS; Bernchou U; Mainegra-Hing E; Brink C
    Acta Oncol; 2013 Oct; 52(7):1477-83. PubMed ID: 23879648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging.
    Dong X; Niu T; Jia X; Zhu L
    Med Phys; 2012 Oct; 39(10):5901-9. PubMed ID: 23039629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT.
    Grimmer R; Kachelriess M
    Med Phys; 2011 Apr; 38(4):2233-40. PubMed ID: 21626957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction.
    Min J; Pua R; Kim I; Han B; Cho S
    Med Phys; 2015 Nov; 42(11):6625-40. PubMed ID: 26520753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
    Yan H; Dai JR
    J Appl Clin Med Phys; 2016 Mar; 17(2):174-193. PubMed ID: 27074482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography.
    Moore CS; Wood TJ; Saunderson JR; Beavis AW
    Phys Med Biol; 2017 Sep; 62(18):7379-7393. PubMed ID: 28742062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers.
    Rozario T; Bereg S; Yan Y; Chiu T; Liu H; Kearney V; Jiang L; Mao W
    J Appl Clin Med Phys; 2015 May; 16(3):5200. PubMed ID: 26103480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach.
    Shi H; Yang Z; Luo S
    J Xray Sci Technol; 2017; 25(3):417-428. PubMed ID: 28157119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data.
    Yang Y; Zhong Z; Guo X; Wang J; Anderson J; Solberg T; Mao W
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):e749-56. PubMed ID: 22330989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.