These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23298231)

  • 41. Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks.
    Fitoussi A; Renault P; Le Moine C; Coutureau E; Cador M; Dellu-Hagedorn F
    Brain Struct Funct; 2018 Mar; 223(2):897-912. PubMed ID: 29026986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opposing Roles of the Dorsolateral and Dorsomedial Striatum in the Acquisition of Skilled Action Sequencing in Rats.
    Turner KM; Svegborn A; Langguth M; McKenzie C; Robbins TW
    J Neurosci; 2022 Mar; 42(10):2039-2051. PubMed ID: 35086903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dopaminergic mechanisms in actions and habits.
    Wickens JR; Horvitz JC; Costa RM; Killcross S
    J Neurosci; 2007 Aug; 27(31):8181-3. PubMed ID: 17670964
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interfacing behavioral and neural circuit models for habit formation.
    Lerner TN
    J Neurosci Res; 2020 Jun; 98(6):1031-1045. PubMed ID: 31916623
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methods for studying habitual behavior in mice.
    Rossi MA; Yin HH
    Curr Protoc Neurosci; 2012 Jul; Chapter 8():Unit 8.29. PubMed ID: 22752897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased expression of 5-HT₆ receptors in dorsolateral striatum decreases habitual lever pressing, but does not affect learning acquisition of simple operant tasks in rats.
    Eskenazi D; Neumaier JF
    Eur J Neurosci; 2011 Jul; 34(2):343-51. PubMed ID: 21714816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Post-training cocaine administration facilitates habit learning and requires the infralimbic cortex and dorsolateral striatum.
    Schmitzer-Torbert N; Apostolidis S; Amoa R; O'Rear C; Kaster M; Stowers J; Ritz R
    Neurobiol Learn Mem; 2015 Feb; 118():105-12. PubMed ID: 25460040
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chronic stress causes frontostriatal reorganization and affects decision-making.
    Dias-Ferreira E; Sousa JC; Melo I; Morgado P; Mesquita AR; Cerqueira JJ; Costa RM; Sousa N
    Science; 2009 Jul; 325(5940):621-5. PubMed ID: 19644122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methamphetamine promotes habitual action and alters the density of striatal glutamate receptor and vesicular proteins in dorsal striatum.
    Furlong TM; Corbit LH; Brown RA; Balleine BW
    Addict Biol; 2018 May; 23(3):857-867. PubMed ID: 28707389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing the associative content of brain structures involved in habitual and goal-directed actions in humans: a multivariate FMRI study.
    McNamee D; Liljeholm M; Zika O; O'Doherty JP
    J Neurosci; 2015 Mar; 35(9):3764-71. PubMed ID: 25740507
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The orbitofrontal cortex regulates outcome-based decision-making via the lateral striatum.
    Gourley SL; Olevska A; Zimmermann KS; Ressler KJ; Dileone RJ; Taylor JR
    Eur J Neurosci; 2013 Aug; 38(3):2382-8. PubMed ID: 23651226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment.
    Nordquist RE; Voorn P; de Mooij-van Malsen JG; Joosten RN; Pennartz CM; Vanderschuren LJ
    Eur Neuropsychopharmacol; 2007 Jul; 17(8):532-40. PubMed ID: 17275266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential consequences of habitual responding in a mouse model of repetitive behavior.
    Curry-Pochy LS; Kravetz Z; Feinstein J; Yaffe B; Tanios V; Makar J; Lewis MH
    Behav Neurosci; 2020 Feb; 134(1):21-33. PubMed ID: 31724406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action.
    Carvalho Poyraz F; Holzner E; Bailey MR; Meszaros J; Kenney L; Kheirbek MA; Balsam PD; Kellendonk C
    J Neurosci; 2016 Jun; 36(22):5988-6001. PubMed ID: 27251620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stress-induced modulation of instrumental behavior: from goal-directed to habitual control of action.
    Schwabe L; Wolf OT
    Behav Brain Res; 2011 Jun; 219(2):321-8. PubMed ID: 21219935
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats.
    Zapata A; Minney VL; Shippenberg TS
    J Neurosci; 2010 Nov; 30(46):15457-63. PubMed ID: 21084602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action.
    Furlong TM; Supit AS; Corbit LH; Killcross S; Balleine BW
    Addict Biol; 2017 Jan; 22(1):172-183. PubMed ID: 26515740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition.
    Darvas M; Palmiter RD
    J Neurosci; 2010 Jan; 30(3):1158-65. PubMed ID: 20089924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dopamine agonists increase perseverative instrumental responses but do not restore habit formation in a rat model of Parkinsonism.
    Faure A; Leblanc-Veyrac P; El Massioui N
    Neuroscience; 2010 Jun; 168(2):477-86. PubMed ID: 20362642
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Habitual Alcohol Seeking: Neural Bases and Possible Relations to Alcohol Use Disorders.
    Corbit LH; Janak PH
    Alcohol Clin Exp Res; 2016 Jul; 40(7):1380-9. PubMed ID: 27223341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.