These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2329840)

  • 1. Ion-selective microelectrodes suitable for recording rapid changes in extracellular ion concentration.
    Wen R; Oakley B
    J Neurosci Methods; 1990 Mar; 31(3):207-13. PubMed ID: 2329840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two types of bipolar microelectrodes for intraretinal use.
    Alferdinck JW; Valeton JM; Van Norren D
    J Neurosci Methods; 1981 Apr; 3(4):397-404. PubMed ID: 7242147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording.
    Fedirko N; Svichar N; Chesler M
    J Neurophysiol; 2006 Aug; 96(2):919-24. PubMed ID: 16672303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-cell recording of intracellular pH with silanized and oiled patch-type single or double-barreled microelectrodes.
    Thomas RC; Pagnotta SE; Nistri A
    Pflugers Arch; 2003 Nov; 447(2):259-65. PubMed ID: 12937988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular and extracellular chloride ions in the horizontal cells of the stingray retina.
    Fujimoto M; Yanase H; Katayama J; Toyoda J
    Jpn J Physiol; 1992; 42(3):525-33. PubMed ID: 1434109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A double-cycle high-speed voltammetric technique allowing direct measurement of irreversibly oxidised species: characterisation and application to the temporal measurement of ascorbate in the rat central nervous system.
    Stamford JA; Kruk ZL; Millar J
    J Neurosci Methods; 1984 Feb; 10(2):107-18. PubMed ID: 6748733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1233-43. PubMed ID: 2746323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.
    Tripathi S; Hladky SB
    Biophys J; 1998 Jun; 74(6):2912-7. PubMed ID: 9635745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in the concentration of K+ induced by a flash of light in the preretinal vitreous of the anesthesized minipig].
    Poitry-Yamate CL; Tsacopoulos M; Pournaras CJ
    Klin Monbl Augenheilkd; 1990 May; 196(5):351-3. PubMed ID: 2366471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue.
    Haack N; Durry S; Kafitz KW; Chesler M; Rose R
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26381747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation.
    Coles JA; Tsacopoulos M
    J Physiol; 1979 May; 290(2):525-49. PubMed ID: 469798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tip size of ion-exchanger based K+-selective microelectrodes. II. Effects on measurement of evoked [K+]0 transients.
    Ransom BR; Carlini WG; Yamate CL
    Can J Physiol Pharmacol; 1987 May; 65(5):894-7. PubMed ID: 3621052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technique for measuring the temporal characteristics of the carbon fibre microelectrodes in in vivo voltammetry at millisecond time intervals.
    Yavich L
    J Neurosci Methods; 1998 Oct; 84(1-2):29-32. PubMed ID: 9821630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tip size of ion-exchanger based K+-selective microelectrodes. I. Effects on selectivity.
    Carlini WG; Ransom BR
    Can J Physiol Pharmacol; 1987 May; 65(5):889-93. PubMed ID: 3621051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current-evoked transcellular K+ flux in frog retina.
    Karwoski CJ; Coles JA; Lu HK; Huang B
    J Neurophysiol; 1989 May; 61(5):939-52. PubMed ID: 2786057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram.
    Oakley B; Green DG
    J Neurophysiol; 1976 Sep; 39(5):1117-33. PubMed ID: 1086346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, evaluation, and use of extracellular K+ and H+ ion-selective electrodes.
    Johnson TA; Engle CL; Kusy RP; Knisley SB; Graebner CA; Gettes LS
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1224-31. PubMed ID: 2331010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical responses and K+ activity changes to light in the ocellus of the planarian Dugesia japonica.
    Azuma K; Okazaki Y; Asai K; Iwasaki N
    Comp Biochem Physiol A Physiol; 1994 Nov; 109(3):593-9. PubMed ID: 8529004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas.
    Dick E; Miller RF; Bloomfield S
    J Gen Physiol; 1985 Jun; 85(6):911-31. PubMed ID: 2410539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.