These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2329840)

  • 21. The measurement of intracellular sodium ion concentration in the horizontal cells of the stingray retina.
    Fujimoto M; Katayama J
    Exp Eye Res; 1993 Oct; 57(4):487-91. PubMed ID: 8282034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance.
    Ammann D; Chao PS; Simon W
    Neurosci Lett; 1987 Feb; 74(2):221-6. PubMed ID: 3574760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-unit pH-sensitive double-barreled microelectrodes for extracellular use.
    Javaheri S; De Hemptinne A; Leusen I
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Sep; 57(3):907-12. PubMed ID: 6490474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mode of origin of large extracellular photovoltages from the retinal rods of the frog.
    Ehrhardt W; Baumann C
    Vision Res; 1983; 23(9):895-902. PubMed ID: 6605612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):656-63. PubMed ID: 8113017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion-sensitive microelectrode system with short response time.
    Mückenhoff K; Schreiber S; De Santis A; Okada Y; Scheid P
    J Neurosci Methods; 1994 Mar; 51(2):147-53. PubMed ID: 8051946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous monitoring of voltammetric and ion-selective electrodes in mammalian brain.
    Nagy G; Moghaddam B; Oke A; Adams RN
    Neurosci Lett; 1985 Apr; 55(2):119-24. PubMed ID: 2860621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thirty years of ion-selective microelectrodes: disappointments and successes.
    Hinke JA
    Can J Physiol Pharmacol; 1987 May; 65(5):873-8. PubMed ID: 3304588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double-barrell ion-sensitive microelectrodes with extra thin tip diameters for intracellular measurements.
    Dufau E; Acker H; Sylvester D
    Med Prog Technol; 1980 Apr; 7(1):35-9. PubMed ID: 7382927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple method for making ion-selective microelectrodes suitable for intracellular recording in vertebrate cells.
    Borrelli MJ; Carlini WG; Dewey WC; Ransom BR
    J Neurosci Methods; 1985; 15(2):141-54. PubMed ID: 4079459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment.
    Nicholson C
    J Neurosci Methods; 1993 Jul; 48(3):199-213. PubMed ID: 8412303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The measurement of K+e concentration changes in human muscles during volitional contractions.
    Vyskocil F; Hník P; Rehfeldt H; Vejsada R; Ujec E
    Pflugers Arch; 1983 Nov; 399(3):235-7. PubMed ID: 6657465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A deconvolution technique for improved estimation of rapid changes in ion concentration recorded with ion-selective microelectrodes.
    Tucker JL; Wen R; Oakley B
    IEEE Trans Biomed Eng; 1991 Feb; 38(2):156-60. PubMed ID: 2066124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-evoked changes in extracellular calcium concentration in frog retina.
    Livsey CT; Huang B; Xu J; Karwoski CJ
    Vision Res; 1990; 30(6):853-61. PubMed ID: 2385926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intraretinal analysis of the threshold dark-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1221-32. PubMed ID: 2746322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anoxia-induced extracellular ionic changes in CNS white matter: the role of glial cells.
    Ransom BR; Philbin DM
    Can J Physiol Pharmacol; 1992; 70 Suppl():S181-9. PubMed ID: 1295669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of extracellular potassium levels by retinal glial cell K+ siphoning.
    Newman EA; Frambach DA; Odette LL
    Science; 1984 Sep; 225(4667):1174-5. PubMed ID: 6474173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sources and sinks of light-evoked delta [K+]o in the vertebrate retina.
    Karwoski CJ; Proenza LM
    Can J Physiol Pharmacol; 1987 May; 65(5):1009-17. PubMed ID: 3304587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.