These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 23298441)
1. Applicability of non-exhaustive extraction procedures with Tenax and HPCD. Bernhardt C; Derz K; Kördel W; Terytze K J Hazard Mater; 2013 Oct; 261():711-7. PubMed ID: 23298441 [TBL] [Abstract][Full Text] [Related]
2. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Stokes JD; Wilkinson A; Reid BJ; Jones KC; Semple KT Environ Toxicol Chem; 2005 Jun; 24(6):1325-30. PubMed ID: 16117107 [TBL] [Abstract][Full Text] [Related]
3. Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Papadopoulos A; Paton GI; Reid BJ; Semple KT J Environ Monit; 2007 Jun; 9(6):516-22. PubMed ID: 17554422 [TBL] [Abstract][Full Text] [Related]
4. Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Stroud JL; Paton GI; Semple KT Chemosphere; 2009 Jan; 74(4):563-7. PubMed ID: 19012945 [TBL] [Abstract][Full Text] [Related]
5. Alternative techniques to HPCD to evaluate the bioaccessible fraction of soil-associated PAHs and correlation to biodegradation efficiency. Crampon M; Bodilis J; Le Derf F; Portet-Koltalo F J Hazard Mater; 2016 Aug; 314():220-229. PubMed ID: 27136727 [TBL] [Abstract][Full Text] [Related]
6. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. Guo M; Gong Z; Allinson G; Tai P; Miao R; Li X; Jia C; Zhuang J Chemosphere; 2016 Feb; 144():1513-20. PubMed ID: 26498099 [TBL] [Abstract][Full Text] [Related]
7. Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Doick KJ; Clasper PJ; Urmann K; Semple KT Environ Pollut; 2006 Nov; 144(1):345-54. PubMed ID: 16564118 [TBL] [Abstract][Full Text] [Related]
8. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique. Papadopoulos A; Reid BJ; Semple KT J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278 [TBL] [Abstract][Full Text] [Related]
9. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Dandie CE; Weber J; Aleer S; Adetutu EM; Ball AS; Juhasz AL Chemosphere; 2010 Nov; 81(9):1061-8. PubMed ID: 20947131 [TBL] [Abstract][Full Text] [Related]
10. Linking chemical extraction to microbial degradation of 14C-hexadecane in soil. Stroud JL; Paton GI; Semple KT Environ Pollut; 2008 Nov; 156(2):474-81. PubMed ID: 18316143 [TBL] [Abstract][Full Text] [Related]
11. Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Hickman ZA; Swindell AL; Allan IJ; Rhodes AH; Hare R; Semple KT; Reid BJ Environ Pollut; 2008 Dec; 156(3):1041-5. PubMed ID: 18554759 [TBL] [Abstract][Full Text] [Related]
12. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. Patterson CJ; Semple KT; Paton GI FEMS Microbiol Lett; 2004 Dec; 241(2):215-20. PubMed ID: 15598535 [TBL] [Abstract][Full Text] [Related]
13. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil. Sun M; Luo Y; Teng Y; Christie P; Jia Z; Li Z Biodegradation; 2013 Jun; 24(3):365-75. PubMed ID: 23001628 [TBL] [Abstract][Full Text] [Related]
14. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Rhodes AH; Dew NM; Semple KT Environ Toxicol Chem; 2008 Jul; 27(7):1488-95. PubMed ID: 18260689 [TBL] [Abstract][Full Text] [Related]
15. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments. Gao H; Ma J; Xu L; Jia L Environ Sci Pollut Res Int; 2014; 21(14):8620-30. PubMed ID: 24705921 [TBL] [Abstract][Full Text] [Related]
16. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays. Guo M; Gong Z; Li X; Allinson G; Rookes J; Cahill D Ecotoxicol Environ Saf; 2017 Jun; 140():191-197. PubMed ID: 28260684 [TBL] [Abstract][Full Text] [Related]
17. Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction. Khan MI; Cheema SA; Shen C; Zhang C; Tang X; Malik Z; Chen X; Chen Y Arch Environ Contam Toxicol; 2011 Jan; 60(1):107-15. PubMed ID: 20437042 [TBL] [Abstract][Full Text] [Related]
18. Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Swindell AL; Reid BJ Chemosphere; 2006 Feb; 62(7):1126-34. PubMed ID: 16087211 [TBL] [Abstract][Full Text] [Related]
19. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-beta-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS). Hua G; Broderick J; Semple KT; Killham K; Singleton I Environ Pollut; 2007 Jul; 148(1):176-81. PubMed ID: 17240015 [TBL] [Abstract][Full Text] [Related]
20. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil. Sun M; Ye M; Hu F; Li H; Teng Y; Luo Y; Jiang X; Kengara FO J Hazard Mater; 2014 Jan; 264():505-13. PubMed ID: 24239261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]