BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23298597)

  • 1. Lateral pressure change on phase transitions of phosphatidylcholine/diolein mixed membranes.
    Kamo T; Handa T; Nakano M
    Colloids Surf B Biointerfaces; 2013 Apr; 104():128-32. PubMed ID: 23298597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of bilayer packing stress and its release in lamellar-cubic phase transition by time-resolved fluorescence anisotropy.
    Nakano M; Kamo T; Sugita A; Handa T
    J Phys Chem B; 2005 Mar; 109(10):4754-60. PubMed ID: 16851558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of an amphipathic alpha-helical peptide on lateral pressure and water penetration in phosphatidylcholine and monoolein mixed membranes.
    Kamo T; Nakano M; Kuroda Y; Handa T
    J Phys Chem B; 2006 Dec; 110(49):24987-92. PubMed ID: 17149920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrostatic pressure effects on a hydrated lipid inverse micellar Fd3m cubic phase.
    Tyler AI; Shearman GC; Brooks NJ; Delacroix H; Law RV; Templer RH; Ces O; Seddon JM
    Phys Chem Chem Phys; 2011 Feb; 13(8):3033-8. PubMed ID: 21135956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and functional properties of diacylglycerols in membranes.
    Goñi FM; Alonso A
    Prog Lipid Res; 1999 Jan; 38(1):1-48. PubMed ID: 10396601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion.
    Basanez G; Nieva JL; Rivas E; Alonso A; Goni FM
    Biophys J; 1996 May; 70(5):2299-306. PubMed ID: 9172753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylcholine-fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (H(II)) phases.
    Seddon JM; Templer RH; Warrender NA; Huang Z; Cevc G; Marsh D
    Biochim Biophys Acta; 1997 Jul; 1327(1):131-47. PubMed ID: 9247174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular excimer formation of pyrene-labeled lipids in lamellar and inverted hexagonal phases of lipid mixtures containing unsaturated phosphatidylethanolamine.
    Cheng KH; Chen SY; Butko P; Van der Meer BW; Somerharju P
    Biophys Chem; 1991 Feb; 39(2):137-44. PubMed ID: 2059663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramolecular excimer formation of pyrene-labeled lipids in lamellar and inverted hexagonal phases of lipid mixtures containing unsaturated phosphatidylethanolamine.
    Kwan HC; Chen SY; Butko P; Wieb Van Der Meer B; Somerharju P
    Biophys Chem; 1991 Feb; 39(2):137-44. PubMed ID: 17014765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism.
    Epand RM; Epand RF; Hughes DW; Sayer BG; Borochov N; Bach D; Wachtel E
    Chem Phys Lipids; 2005 May; 135(1):39-53. PubMed ID: 15854624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merocyanine 540 as a fluorescence indicator for molecular packing stress at the onset of lamellar-hexagonal transition of phosphatidylethanolamine bilayers.
    Langner M; Hui SW
    Biochim Biophys Acta; 1999 Jan; 1415(2):323-30. PubMed ID: 9889390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intracellular lamellar-nonlamellar phase transition rationalizes the superior performance of some cationic lipid transfection agents.
    Koynova R; Wang L; MacDonald RC
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14373-8. PubMed ID: 16983097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitions induced by solubilized fat into reverse hexagonal mesophases.
    Amar-Yuli I; Garti N
    Colloids Surf B Biointerfaces; 2005 Jun; 43(2):72-82. PubMed ID: 15921902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence probing of the temperature-induced phase transition in a glycolipid self-assembly: hexagonal ↔ micellar and cubic ↔ lamellar.
    Zahid NI; Abou-Zied OK; Hashim R; Heidelberg T
    Langmuir; 2012 Mar; 28(11):4989-95. PubMed ID: 22364590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diacylglycerol causes major structural transitions in phospholipid bilayer membranes.
    Das S; Rand RP
    Biochem Biophys Res Commun; 1984 Oct; 124(2):491-6. PubMed ID: 6541910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of independent variations in fatty acid structure and chain length on lipid polar headgroup composition in Acholeplasma laidlawii B membranes: regulation of lamellar/nonlamellar phase propensity.
    Yue AW; Wong BC; Rieder J; Lewis RN; Mannock DA; McElhaney RN
    Biochemistry; 2003 Feb; 42(5):1309-17. PubMed ID: 12564934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing bicontinuous lipid cubic phases from isotropic membrane morphologies using (31)P solid-state NMR spectroscopy.
    Yang Y; Yao H; Hong M
    J Phys Chem B; 2015 Apr; 119(15):4993-5001. PubMed ID: 25815701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared and time-resolved fluorescence spectroscopic studies of the polymorphic phase behavior of phosphatidylethanolamine/diacylglycerol lipid mixtures.
    Chen SY; Cheng KH
    Chem Phys Lipids; 1990 Dec; 56(2-3):149-58. PubMed ID: 2095990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral diffusion study of excimer-forming lipids in lamellar to inverted hexagonal phase transition of unsaturated phosphatidylethanolamine.
    Chen SY; Cheng KH; Ortalano DM
    Chem Phys Lipids; 1990 Mar; 53(4):321-9. PubMed ID: 2340604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.