BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23298749)

  • 1. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.
    Calamante F; Masterton RA; Tournier JD; Smith RE; Willats L; Raffelt D; Connelly A
    Neuroimage; 2013 Apr; 70():199-210. PubMed ID: 23298749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Track-weighted dynamic functional connectivity (TW-dFC): a new method to study time-resolved functional connectivity.
    Calamante F; Smith RE; Liang X; Zalesky A; Connelly A
    Brain Struct Funct; 2017 Nov; 222(8):3761-3774. PubMed ID: 28447220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships.
    Khalsa S; Mayhew SD; Chechlacz M; Bagary M; Bagshaw AP
    Neuroimage; 2014 Nov; 102 Pt 1():118-27. PubMed ID: 24365673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability.
    Willats L; Raffelt D; Smith RE; Tournier JD; Connelly A; Calamante F
    Neuroimage; 2014 Feb; 87():18-31. PubMed ID: 24246491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White matter microstructure underlying default mode network connectivity in the human brain.
    Teipel SJ; Bokde AL; Meindl T; Amaro E; Soldner J; Reiser MF; Herpertz SC; Möller HJ; Hampel H
    Neuroimage; 2010 Feb; 49(3):2021-32. PubMed ID: 19878723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Tensor Informed Fiber Tractography (STIFT) by combining gradient echo MRI and diffusion weighted imaging.
    Kleinnijenhuis M; Barth M; Alexander DC; van Cappellen van Walsum AM; Norris DG
    Neuroimage; 2012 Feb; 59(4):3941-54. PubMed ID: 22056460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study.
    Rose S; Pannek K; Bell C; Baumann F; Hutchinson N; Coulthard A; McCombe P; Henderson R
    Neuroimage; 2012 Feb; 59(3):2661-9. PubMed ID: 21893207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structurofunctional resting-state networks correlate with motor function in chronic stroke.
    Kalinosky BT; Berrios Barillas R; Schmit BD
    Neuroimage Clin; 2017; 16():610-623. PubMed ID: 28971011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical analysis of minimum cost path based structural brain connectivity.
    de Boer R; Schaap M; van der Lijn F; Vrooman HA; de Groot M; van der Lugt A; Ikram MA; Vernooij MW; Breteler MM; Niessen WJ
    Neuroimage; 2011 Mar; 55(2):557-65. PubMed ID: 21147237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healthy aging by staying selectively connected: a mini-review.
    Antonenko D; Flöel A
    Gerontology; 2014; 60(1):3-9. PubMed ID: 24080587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional magnetic resonance imaging correlates of motor network dysfunction in primary progressive multiple sclerosis.
    Ceccarelli A; Rocca MA; Valsasina P; Rodegher M; Falini A; Comi G; Filippi M
    Eur J Neurosci; 2010 Apr; 31(7):1273-80. PubMed ID: 20345920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Track-weighted imaging methods: extracting information from a streamlines tractogram.
    Calamante F
    MAGMA; 2017 Aug; 30(4):317-335. PubMed ID: 28181027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and structural syntax networks in aging.
    Antonenko D; Brauer J; Meinzer M; Fengler A; Kerti L; Friederici AD; Flöel A
    Neuroimage; 2013 Dec; 83():513-23. PubMed ID: 23867559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy.
    Zhang Z; Liao W; Chen H; Mantini D; Ding JR; Xu Q; Wang Z; Yuan C; Chen G; Jiao Q; Lu G
    Brain; 2011 Oct; 134(Pt 10):2912-28. PubMed ID: 21975588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach.
    Sotiropoulos SN; Bai L; Morgan PS; Constantinescu CS; Tench CR
    Neuroimage; 2010 Feb; 49(3):2444-56. PubMed ID: 19818861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
    Ginestet CE; Simmons A
    Neuroimage; 2011 Mar; 55(2):688-704. PubMed ID: 21095229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis.
    Hlinka J; Alexakis C; Diukova A; Liddle PF; Auer DP
    Neuroimage; 2010 Oct; 53(1):239-46. PubMed ID: 20538065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability.
    Bürgel U; Amunts K; Hoemke L; Mohlberg H; Gilsbach JM; Zilles K
    Neuroimage; 2006 Feb; 29(4):1092-105. PubMed ID: 16236527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.