These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 23298788)
1. Green production of zero-valent iron nanoparticles using tree leaf extracts. Machado S; Pinto SL; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2013 Feb; 445-446():1-8. PubMed ID: 23298788 [TBL] [Abstract][Full Text] [Related]
2. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651 [TBL] [Abstract][Full Text] [Related]
3. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Machado S; Stawiński W; Slonina P; Pinto AR; Grosso JP; Nouws HP; Albergaria JT; Delerue-Matos C Sci Total Environ; 2013 Sep; 461-462():323-9. PubMed ID: 23738986 [TBL] [Abstract][Full Text] [Related]
4. Removal of Ni(II) and Cu(II) from aqueous solutions using 'green' zero-valent iron nanoparticles produced by oak and mulberry leaf extracts. Poguberović SS; Krčmar DM; Dalmacija BD; Maletić SP; Tomašević-Pilipović DD; Kerkez DV; Rončević SD Water Sci Technol; 2016 Nov; 74(9):2115-2123. PubMed ID: 27842031 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. Kamath V; Chandra P; Jeppu GP Int J Phytoremediation; 2020; 22(12):1278-1294. PubMed ID: 32515215 [TBL] [Abstract][Full Text] [Related]
6. Green biosynthesis of silver nanoparticles using Quercus brantii (oak) leaves hydroalcoholic extract. Korbekandi H; Chitsazi MR; Asghari G; Bahri Najafi R; Badii A; Iravani S Pharm Biol; 2015 Jun; 53(6):807-12. PubMed ID: 25697607 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the constituents and antioxidant activity of Brazilian green tea (Camellia sinensis var. assamica IAC-259 cultivar) extracts. Saito ST; Gosmann G; Saffi J; Presser M; Richter MF; Bergold AM J Agric Food Chem; 2007 Nov; 55(23):9409-14. PubMed ID: 17937477 [TBL] [Abstract][Full Text] [Related]
8. Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Onitsuka S; Hamada T; Okamura H Colloids Surf B Biointerfaces; 2019 Jan; 173():242-248. PubMed ID: 30300830 [TBL] [Abstract][Full Text] [Related]
9. Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Machado S; Grosso JP; Nouws HPA; Albergaria JT; Delerue-Matos C Sci Total Environ; 2014 Oct; 496():233-240. PubMed ID: 25089685 [TBL] [Abstract][Full Text] [Related]
10. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles. Unachukwu UJ; Ahmed S; Kavalier A; Lyles JT; Kennelly EJ J Food Sci; 2010 Aug; 75(6):C541-8. PubMed ID: 20722909 [TBL] [Abstract][Full Text] [Related]
11. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Ozkan ZY; Cakirgoz M; Kaymak ES; Erdim E Water Sci Technol; 2018 Jan; 77(1-2):511-517. PubMed ID: 29377835 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Huang L; Weng X; Chen Z; Megharaj M; Naidu R Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():801-4. PubMed ID: 24094918 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Zahir AA; Rahuman AA Vet Parasitol; 2012 Jul; 187(3-4):511-20. PubMed ID: 22429701 [TBL] [Abstract][Full Text] [Related]
14. Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. Kerio LC; Wachira FN; Wanyoko JK; Rotich MK Food Chem; 2013 Feb; 136(3-4):1405-13. PubMed ID: 23194541 [TBL] [Abstract][Full Text] [Related]
15. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Begum NA; Mondal S; Basu S; Laskar RA; Mandal D Colloids Surf B Biointerfaces; 2009 Jun; 71(1):113-8. PubMed ID: 19250808 [TBL] [Abstract][Full Text] [Related]
16. Chemical evaluation, antioxidant capacity, and consumer acceptance of several oak infusions. Rocha-Guzmán NE; Medina-Medrano JR; Gallegos-Infante JA; Gonzalez-Laredo RF; Ramos-Gómez M; Reynoso-Camacho R; Guzmán-Maldonado H; González-Herrera SM J Food Sci; 2012 Feb; 77(2):C162-6. PubMed ID: 22339542 [TBL] [Abstract][Full Text] [Related]
17. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. Monobe M; Ema K; Kato F; Maeda-Yamamoto M J Agric Food Chem; 2008 Feb; 56(4):1423-7. PubMed ID: 18232634 [TBL] [Abstract][Full Text] [Related]
18. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Song JY; Kim BS Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688 [TBL] [Abstract][Full Text] [Related]
19. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426 [TBL] [Abstract][Full Text] [Related]
20. Ten marker compounds-based comparative study of green tea and guava leaf by HPTLC densitometry methods: antioxidant activity profiling. Khan I; Sangwan PL; Abdullah ST; Gupta BD; Dhar JK; Manickavasagar R; Koul S J Sep Sci; 2011 Apr; 34(7):749-60. PubMed ID: 21384548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]