These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. BSA-PLGA-based core-shell nanoparticles as carrier system for water-soluble drugs. Chitkara D; Kumar N Pharm Res; 2013 Sep; 30(9):2396-409. PubMed ID: 23756758 [TBL] [Abstract][Full Text] [Related]
3. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Yalcin TE; Ilbasmis-Tamer S; Takka S Int J Pharm; 2018 Sep; 548(1):255-262. PubMed ID: 29969712 [TBL] [Abstract][Full Text] [Related]
4. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells. Intra J; Salem AK J Drug Target; 2011 Jul; 19(6):393-408. PubMed ID: 20681752 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a stability indicating isocratic HPLC method for gemcitabine with application to drug release from poly lactic-co-glycolic acid nanoparticles and enzymatic degradation studies. Chen G; Svirskis D; Wen J J Pharm Pharmacol; 2015 Nov; 67(11):1528-36. PubMed ID: 26369422 [TBL] [Abstract][Full Text] [Related]
6. Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Jaidev LR; Krishnan UM; Sethuraman S Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():40-7. PubMed ID: 25492170 [TBL] [Abstract][Full Text] [Related]
7. Development of Gemcitabine Loaded PLGA/Lecithin Nanoparticles for Non-Small Cell Lung Cancer Therapy. Esim O; Ozkan CK; Sarper M; Savaser A; Ozkan Y Curr Drug Deliv; 2020; 17(7):622-628. PubMed ID: 32394837 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization and mechanistic-insight into the anti-proliferative potential of PLGA-gemcitabine conjugate. Khare V; Kour S; Alam N; Dubey RD; Saneja A; Koul M; Gupta AP; Singh D; Singh SK; Saxena AK; Gupta PN Int J Pharm; 2014 Aug; 470(1-2):51-62. PubMed ID: 24810239 [TBL] [Abstract][Full Text] [Related]
10. PLGA nanoparticles for the oral delivery of 5-Fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies. Li X; Xu Y; Chen G; Wei P; Ping Q Drug Dev Ind Pharm; 2008 Jan; 34(1):107-15. PubMed ID: 18214762 [TBL] [Abstract][Full Text] [Related]
11. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Yalcin TE; Ilbasmis-Tamer S; Ibisoglu B; Özdemir A; Ark M; Takka S Pharm Dev Technol; 2018 Jan; 23(1):76-86. PubMed ID: 28724327 [TBL] [Abstract][Full Text] [Related]
12. Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake, and pharmacokinetic studies. Jamil A; Aamir Mirza M; Anwer MK; Thakur PS; Alshahrani SM; Alshetaili AS; Telegaonkar S; Panda AK; Iqbal Z Drug Dev Ind Pharm; 2019 May; 45(5):745-753. PubMed ID: 30632800 [TBL] [Abstract][Full Text] [Related]
13. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Joshi G; Kumar A; Sawant K Eur J Pharm Sci; 2014 Aug; 60():80-9. PubMed ID: 24810394 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial and sequential delivery of gemcitabine and oseltamivir phosphate from implantable poly(d,l-lactic-co-glycolic acid) cylinders disables human pancreatic cancer cell survival. Allison Logan S; Brissenden AJ; Szewczuk MR; Neufeld RJ Drug Des Devel Ther; 2017; 11():2239-2250. PubMed ID: 28814832 [TBL] [Abstract][Full Text] [Related]
16. Formulation and Pharmacokinetics of HSA-core and PLGA-shell Nanoparticles for Delivering Gemcitabine. Wang X; Liang Y; Fei S; He H; Zhang Y; Yin T; Tang X AAPS PharmSciTech; 2018 Feb; 19(2):812-819. PubMed ID: 29019099 [TBL] [Abstract][Full Text] [Related]
17. Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy. Khare V; Singh A; Mahajan G; Alam N; Kour S; Gupta M; Kumar A; Singh G; Singh SK; Saxena AK; Mondhe DM; Gupta PN Eur J Pharm Sci; 2016 Sep; 92():183-93. PubMed ID: 27404580 [TBL] [Abstract][Full Text] [Related]
18. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Wang M; Zhang Y; Feng J; Gu T; Dong Q; Yang X; Sun Y; Wu Y; Chen Y; Kong W Int J Nanomedicine; 2013; 8():1141-54. PubMed ID: 23658482 [TBL] [Abstract][Full Text] [Related]
19. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Niu X; Zou W; Liu C; Zhang N; Fu C Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638 [TBL] [Abstract][Full Text] [Related]
20. Celecoxib-loaded poly(D,L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. McCarron PA; Donnelly RF; Marouf W J Microencapsul; 2006 Aug; 23(5):480-98. PubMed ID: 16980271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]