BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23299412)

  • 1. Redox control of the activity of phosphoglycerate kinase in Synechocystis sp. PCC6803.
    Tsukamoto Y; Fukushima Y; Hara S; Hisabori T
    Plant Cell Physiol; 2013 Apr; 54(4):484-91. PubMed ID: 23299412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: analysis of the AGP and glycogen synthases.
    Díaz-Troya S; López-Maury L; Sánchez-Riego AM; Roldán M; Florencio FJ
    Mol Plant; 2014 Jan; 7(1):87-100. PubMed ID: 24121290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin-dependent redox regulation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.
    Morisse S; Michelet L; Bedhomme M; Marchand CH; Calvaresi M; Trost P; Fermani S; Zaffagnini M; Lemaire SD
    J Biol Chem; 2014 Oct; 289(43):30012-24. PubMed ID: 25202015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin.
    Mata-Cabana A; Florencio FJ; Lindahl M
    Proteomics; 2007 Nov; 7(21):3953-63. PubMed ID: 17922517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastidic phosphoglycerate kinase from Phaeodactylum tricornutum: on the critical role of cysteine residues for the enzyme function.
    Bosco MB; Aleanzi MC; Iglesias AÁ
    Protist; 2012 Mar; 163(2):188-203. PubMed ID: 21816671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selecting thioredoxins for disulphide proteomics: target proteomes of three thioredoxins from the cyanobacterium Synechocystis sp. PCC 6803.
    Pérez-Pérez ME; Florencio FJ; Lindahl M
    Proteomics; 2006 Apr; 6 Suppl 1():S186-95. PubMed ID: 16526092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of m-type thioredoxin impairs photosynthesis, carbon fixation, and oxidative stress in cyanobacteria.
    Mallén-Ponce MJ; Huertas MJ; Sánchez-Riego AM; Florencio FJ
    Plant Physiol; 2021 Nov; 187(3):1325-1340. PubMed ID: 34618018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the GntR-family transcription factor Sll1961 with thioredoxin in the cyanobacterium Synechocystis sp. PCC 6803.
    Kujirai J; Nanba S; Kadowaki T; Oka Y; Nishiyama Y; Hayashi Y; Arai M; Hihara Y
    Sci Rep; 2018 Apr; 8(1):6666. PubMed ID: 29703909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic regulation of the cyanobacterium Synechocystis sp. PCC 6803 thioredoxin system and functional analysis of TrxB (Trx x) and TrxQ (Trx y) thioredoxins.
    Pérez-Pérez ME; Martín-Figueroa E; Florencio FJ
    Mol Plant; 2009 Mar; 2(2):270-83. PubMed ID: 19825613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of OmpR-family response regulators interacting with thioredoxin in the Cyanobacterium Synechocystis sp. PCC 6803.
    Kadowaki T; Nishiyama Y; Hisabori T; Hihara Y
    PLoS One; 2015; 10(3):e0119107. PubMed ID: 25774906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria.
    Lindahl M; Kieselbach T
    J Proteomics; 2009 Apr; 72(3):416-38. PubMed ID: 19185068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-based redox modulation of a cyanobacterial eukaryotic-type serine/threonine kinase required for oxidative stress tolerance.
    Mata-Cabana A; García-Domínguez M; Florencio FJ; Lindahl M
    Antioxid Redox Signal; 2012 Aug; 17(4):521-33. PubMed ID: 22530622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of Arabidopsis mitochondrial citrate synthase.
    Schmidtmann E; König AC; Orwat A; Leister D; Hartl M; Finkemeier I
    Mol Plant; 2014 Jan; 7(1):156-69. PubMed ID: 24198232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PedR transcriptional regulator interacts with thioredoxin to connect photosynthesis with gene expression in cyanobacteria.
    Horiuchi M; Nakamura K; Kojima K; Nishiyama Y; Hatakeyama W; Hisabori T; Hihara Y
    Biochem J; 2010 Oct; 431(1):135-40. PubMed ID: 20662766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria.
    Ma Y; Yang M; Lin X; Liu X; Huang H; Ge F
    J Proteome Res; 2017 May; 16(5):2030-2043. PubMed ID: 28365990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characterization of a key gene in membrane lipid cycle in Synechocystis sp. PCC6803].
    Gao Q; Tan X; Lü X
    Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1473-81. PubMed ID: 23593871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thioredoxin reductase-glutaredoxins-ferredoxin crossroad pathway for selenate tolerance in Synechocystis PCC6803.
    Marteyn B; Domain F; Legrain P; Chauvat F; Cassier-Chauvat C
    Mol Microbiol; 2009 Jan; 71(2):520-32. PubMed ID: 19040637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel targets of cyanobacterial glutaredoxin.
    Li M; Yang Q; Zhang L; Li H; Cui Y; Wu Q
    Arch Biochem Biophys; 2007 Feb; 458(2):220-8. PubMed ID: 17239812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803.
    Kojima K; Motohashi K; Morota T; Oshita M; Hisabori T; Hayashi H; Nishiyama Y
    J Biol Chem; 2009 Jul; 284(28):18685-91. PubMed ID: 19447882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.