These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23299416)

  • 41. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis.
    Rose CM; Venkateshwaran M; Volkening JD; Grimsrud PA; Maeda J; Bailey DJ; Park K; Howes-Podoll M; den Os D; Yeun LH; Westphall MS; Sussman MR; Ané JM; Coon JJ
    Mol Cell Proteomics; 2012 Sep; 11(9):724-44. PubMed ID: 22683509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis.
    An J; Zeng T; Ji C; de Graaf S; Zheng Z; Xiao TT; Deng X; Xiao S; Bisseling T; Limpens E; Pan Z
    New Phytol; 2019 Oct; 224(1):396-408. PubMed ID: 31148173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Buffering capacity explains signal variation in symbiotic calcium oscillations.
    Granqvist E; Wysham D; Hazledine S; Kozlowski W; Sun J; Charpentier M; Martins TV; Haleux P; Tsaneva-Atanasova K; Downie JA; Oldroyd GE; Morris RJ
    Plant Physiol; 2012 Dec; 160(4):2300-10. PubMed ID: 23027664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula.
    Hofferek V; Mendrinna A; Gaude N; Krajinski F; Devers EA
    BMC Plant Biol; 2014 Jul; 14():199. PubMed ID: 25928247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula.
    Sieh D; Watanabe M; Devers EA; Brueckner F; Hoefgen R; Krajinski F
    New Phytol; 2013 Jan; 197(2):606-616. PubMed ID: 23190168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway.
    Gutjahr C; Banba M; Croset V; An K; Miyao A; An G; Hirochika H; Imaizumi-Anraku H; Paszkowski U
    Plant Cell; 2008 Nov; 20(11):2989-3005. PubMed ID: 19033527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species.
    Sui XL; Zhang T; Tian YQ; Xue RJ; Li AR
    New Phytol; 2019 Jan; 221(1):470-481. PubMed ID: 30078224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tripartite mutualism: facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts.
    Ossler JN; Zielinski CA; Heath KD
    Am J Bot; 2015 Aug; 102(8):1332-41. PubMed ID: 26290556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Innovation and appropriation in mycorrhizal and rhizobial Symbioses.
    Wang D; Dong W; Murray J; Wang E
    Plant Cell; 2022 Apr; 34(5):1573-1599. PubMed ID: 35157080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula.
    Feng F; Sun J; Radhakrishnan GV; Lee T; Bozsóki Z; Fort S; Gavrin A; Gysel K; Thygesen MB; Andersen KR; Radutoiu S; Stougaard J; Oldroyd GED
    Nat Commun; 2019 Nov; 10(1):5047. PubMed ID: 31695035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula.
    Camps C; Jardinaud MF; Rengel D; Carrère S; Hervé C; Debellé F; Gamas P; Bensmihen S; Gough C
    New Phytol; 2015 Oct; 208(1):224-40. PubMed ID: 25919491
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.
    Kafle A; Garcia K; Wang X; Pfeffer PE; Strahan GD; Bücking H
    Plant Cell Environ; 2019 Jan; 42(1):270-284. PubMed ID: 29859016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2.
    Li XR; Sun J; Albinsky D; Zarrabian D; Hull R; Lee T; Jarratt-Barnham E; Chiu CH; Jacobsen A; Soumpourou E; Albanese A; Kohlen W; Luginbuehl LH; Guillotin B; Lawrensen T; Lin H; Murray J; Wallington E; Harwood W; Choi J; Paszkowski U; Oldroyd GED
    Nat Commun; 2022 Oct; 13(1):6421. PubMed ID: 36307431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis.
    Huisman R; Hontelez J; Mysore KS; Wen J; Bisseling T; Limpens E
    New Phytol; 2016 Sep; 211(4):1338-51. PubMed ID: 27110912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Medicago truncatula Mtha1-2 mutants loose metabolic responses to mycorrhizal colonization.
    Hubberten HM; Sieh D; Zöller D; Hoefgen R; Krajinski F
    Plant Signal Behav; 2015; 10(6):e989025. PubMed ID: 25751449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula.
    Lagunas B; Achom M; Bonyadi-Pour R; Pardal AJ; Richmond BL; Sergaki C; Vázquez S; Schäfer P; Ott S; Hammond J; Gifford ML
    Mol Plant; 2019 Jun; 12(6):833-846. PubMed ID: 30953787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.
    Seddas PM; Arias CM; Arnould C; van Tuinen D; Godfroy O; Benhassou HA; Gouzy J; Morandi D; Dessaint F; Gianinazzi-Pearson V
    Mol Plant Microbe Interact; 2009 Mar; 22(3):341-51. PubMed ID: 19245328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specificity in Legume-Rhizobia Symbioses.
    Andrews M; Andrews ME
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28346361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus.
    Suzaki T; Takeda N; Nishida H; Hoshino M; Ito M; Misawa F; Handa Y; Miura K; Kawaguchi M
    PLoS Genet; 2019 Jan; 15(1):e1007865. PubMed ID: 30605473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nuclear membranes control symbiotic calcium signaling of legumes.
    Capoen W; Sun J; Wysham D; Otegui MS; Venkateshwaran M; Hirsch S; Miwa H; Downie JA; Morris RJ; Ané JM; Oldroyd GE
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14348-53. PubMed ID: 21825141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.