These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23299484)

  • 1. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time.
    Wernli J; Schumacher S; Spoerl E; Mrochen M
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1176-80. PubMed ID: 23299484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances.
    Hammer A; Richoz O; Arba Mosquera S; Tabibian D; Hoogewoud F; Hafezi F
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2881-4. PubMed ID: 24677109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation.
    Schumacher S; Oeftiger L; Mrochen M
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9048-52. PubMed ID: 22025568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First proposed efficacy study of high versus standard irradiance and fractionated riboflavin/ultraviolet a cross-linking with equivalent energy exposure.
    Krueger RR; Herekar S; Spoerl E
    Eye Contact Lens; 2014 Nov; 40(6):353-7. PubMed ID: 25365552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments.
    Kling S; Remon L; Pérez-Escudero A; Merayo-Lloves J; Marcos S
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3961-8. PubMed ID: 20335615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time.
    Vinciguerra P
    Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):. PubMed ID: 23408187
    [No Abstract]   [Full Text] [Related]  

  • 7. Cross-Linking Biomechanical Effect in Human Corneas by Same Energy, Different UV-A Fluence: An Enzymatic Digestion Comparative Evaluation.
    Kanellopoulos AJ; Loukas YL; Asimellis G
    Cornea; 2016 Apr; 35(4):557-61. PubMed ID: 26845317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term biomechanical properties of rabbit sclera after collagen crosslinking using riboflavin and ultraviolet A (UVA).
    Wollensak G; Iomdina E
    Acta Ophthalmol; 2009 Mar; 87(2):193-8. PubMed ID: 18803623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.
    Labate C; Lombardo M; Lombardo G; De Santo MP
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):179-184. PubMed ID: 28114577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal Cross-Linking: Evaluating the Potential for a Lower Power, Shorter Duration Treatment.
    Caruso C; Barbaro G; Epstein RL; Tronino D; Ostacolo C; Sacchi A; Pacente L; Del Prete A; Sala M; Troisi S
    Cornea; 2016 May; 35(5):659-62. PubMed ID: 26989958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limbal and conjunctival epithelium after corneal cross-linking using riboflavin and UVA.
    Wollensak G; Mazzotta C; Kalinski T; Sel S
    Cornea; 2011 Dec; 30(12):1448-54. PubMed ID: 21955632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in Corneal Biomechanical Properties With Different Corneal Cross-linking Irradiances.
    Bao F; Zheng Y; Liu C; Zheng X; Zhao Y; Wang Y; Li L; Wang Q; Chen S; Elsheikh A
    J Refract Surg; 2018 Jan; 34(1):51-58. PubMed ID: 29315442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization model for UV-riboflavin corneal cross-linking.
    Schumacher S; Mrochen M; Wernli J; Bueeler M; Seiler T
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):762-9. PubMed ID: 22222507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking.
    Kling S; Ginis H; Marcos S
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):5010-5. PubMed ID: 22736617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional Biomechanical properties of human sclera after cross-linking by riboflavin/ultraviolet A.
    Wang M; Zhang F; Qian X; Zhao X
    J Refract Surg; 2012 Oct; 28(10):723-8. PubMed ID: 23062003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA.
    Wollensak G; Iomdina E; Dittert DD; Salamatina O; Stoltenburg G
    Acta Ophthalmol Scand; 2005 Aug; 83(4):477-82. PubMed ID: 16029274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light.
    Kohlhaas M; Spoerl E; Schilde T; Unger G; Wittig C; Pillunat LE
    J Cataract Refract Surg; 2006 Feb; 32(2):279-83. PubMed ID: 16565005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Customized Corneal Cross-Linking-A Mathematical Model.
    Caruso C; Epstein RL; Ostacolo C; Pacente L; Troisi S; Barbaro G
    Cornea; 2017 May; 36(5):600-604. PubMed ID: 28257382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking.
    Wollensak G; Spoerl E; Seiler T
    J Cataract Refract Surg; 2003 Sep; 29(9):1780-5. PubMed ID: 14522301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermomechanical behavior of collagen-cross-linked porcine cornea.
    Spoerl E; Wollensak G; Dittert DD; Seiler T
    Ophthalmologica; 2004; 218(2):136-40. PubMed ID: 15004504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.