These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23299563)
1. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering. Guo H; Xu W; Zhou J; Xu S; Lombardi JR Nanotechnology; 2013 Feb; 24(4):045608. PubMed ID: 23299563 [TBL] [Abstract][Full Text] [Related]
2. Influence of the number of nanoparticles on the enhancement properties of surface-enhanced Raman scattering active area: sensitivity versus repeatability. Margueritat J; Gehan H; Grand J; Lévi G; Aubard J; Félidj N; Bouhelier A; Colas-Des-Francs G; Markey L; Marco De Lucas C; Dereux A; Finot E ACS Nano; 2011 Mar; 5(3):1630-8. PubMed ID: 21366249 [TBL] [Abstract][Full Text] [Related]
3. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering. Qian C; Ni C; Yu W; Wu W; Mao H; Wang Y; Xu J Small; 2011 Jul; 7(13):1800-6. PubMed ID: 21608122 [TBL] [Abstract][Full Text] [Related]
5. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy. Tian C; Liu Z; Jin J; Lebedkin S; Huang C; You H; Liu R; Wang L; Song X; Ding B; Barczewski M; Schimmel T; Fang J Nanotechnology; 2012 Apr; 23(16):165604. PubMed ID: 22469765 [TBL] [Abstract][Full Text] [Related]
6. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
7. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. Saboktakin M; Ye X; Oh SJ; Hong SH; Fafarman AT; Chettiar UK; Engheta N; Murray CB; Kagan CR ACS Nano; 2012 Oct; 6(10):8758-66. PubMed ID: 22967489 [TBL] [Abstract][Full Text] [Related]
8. A SERS-active nanocrystalline pd substrate and its nanopatterning leading to biochip fabrication. Bhuvana T; Kulkarni GU Small; 2008 May; 4(5):670-6. PubMed ID: 18491365 [TBL] [Abstract][Full Text] [Related]
9. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. Yoon JH; Lim J; Yoon S ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455 [TBL] [Abstract][Full Text] [Related]
10. Controllable and reproducible construction of a SERS substrate and its sensing applications. Wen Y; Wang W; Zhang Z; Xu L; Du H; Zhang X; Song Y Nanoscale; 2013 Jan; 5(2):523-6. PubMed ID: 23223828 [TBL] [Abstract][Full Text] [Related]
11. Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array. Xia L; Yang Z; Yin S; Guo W; Li S; Xie W; Huang D; Deng Q; Shi H; Cui H; Du C Opt Express; 2013 May; 21(9):11349-55. PubMed ID: 23669991 [TBL] [Abstract][Full Text] [Related]
12. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. D'Andrea C; Neri F; Ossi PM; Santo N; Trusso S Nanotechnology; 2009 Jun; 20(24):245606. PubMed ID: 19471080 [TBL] [Abstract][Full Text] [Related]
13. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Hu X; Meng G; Huang Q; Xu W; Han F; Sun K; Xu Q; Wang Z Nanotechnology; 2012 Sep; 23(38):385705. PubMed ID: 22948006 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. Abu Hatab NA; Oran JM; Sepaniak MJ ACS Nano; 2008 Feb; 2(2):377-85. PubMed ID: 19206640 [TBL] [Abstract][Full Text] [Related]
15. Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals. Carville NC; Manzo M; Damm S; Castiella M; Collins L; Denning D; Weber SA; Gallo K; Rice JH; Rodriguez BJ ACS Nano; 2012 Aug; 6(8):7373-80. PubMed ID: 22775541 [TBL] [Abstract][Full Text] [Related]
16. Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons. Wu XL; Xiong SJ; Sun LT; Shen JC; Chu PK Small; 2009 Dec; 5(24):2823-6. PubMed ID: 19882689 [No Abstract] [Full Text] [Related]
17. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Jun BH; Noh MS; Kim J; Kim G; Kang H; Kim MS; Seo YT; Baek J; Kim JH; Park J; Kim S; Kim YK; Hyeon T; Cho MH; Jeong DH; Lee YS Small; 2010 Jan; 6(1):119-25. PubMed ID: 19904763 [TBL] [Abstract][Full Text] [Related]
19. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates. Sun M; Qian C; Wu W; Yu W; Wang Y; Mao H Nanotechnology; 2012 Sep; 23(38):385303. PubMed ID: 22948251 [TBL] [Abstract][Full Text] [Related]
20. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. Cho WJ; Kim Y; Kim JK ACS Nano; 2012 Jan; 6(1):249-55. PubMed ID: 22117916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]