These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 23299668)

  • 1. Genetic control of root organogenesis in cereals.
    Marcon C; Paschold A; Hochholdinger F
    Methods Mol Biol; 2013; 959():69-81. PubMed ID: 23299668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From weeds to crops: genetic analysis of root development in cereals.
    Hochholdinger F; Park WJ; Sauer M; Woll K
    Trends Plant Sci; 2004 Jan; 9(1):42-8. PubMed ID: 14729218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control of root development in rice, the model cereal.
    Coudert Y; Périn C; Courtois B; Khong NG; Gantet P
    Trends Plant Sci; 2010 Apr; 15(4):219-26. PubMed ID: 20153971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dicot root as a model system for studying organogenesis.
    Lavenus J; Lucas M; Laplaze L; Guyomarc'h S
    Methods Mol Biol; 2013; 959():45-67. PubMed ID: 23299667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis.
    Verstraeten I; Beeckman T; Geelen D
    Methods Mol Biol; 2013; 959():159-75. PubMed ID: 23299674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver.
    Rich SM; Watt M
    J Exp Bot; 2013 Mar; 64(5):1193-208. PubMed ID: 23505309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Control of Lateral Root Formation in Cereals.
    Yu P; Gutjahr C; Li C; Hochholdinger F
    Trends Plant Sci; 2016 Nov; 21(11):951-961. PubMed ID: 27524642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation.
    Taramino G; Sauer M; Stauffer JL; Multani D; Niu X; Sakai H; Hochholdinger F
    Plant J; 2007 May; 50(4):649-59. PubMed ID: 17425722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral root organogenesis - from cell to organ.
    Benková E; Bielach A
    Curr Opin Plant Biol; 2010 Dec; 13(6):677-83. PubMed ID: 20934368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Quantitative Genetic Control of Root Architecture in Maize.
    Bray AL; Topp CN
    Plant Cell Physiol; 2018 Oct; 59(10):1919-1930. PubMed ID: 30020530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize.
    von Behrens I; Komatsu M; Zhang Y; Berendzen KW; Niu X; Sakai H; Taramino G; Hochholdinger F
    Plant J; 2011 Apr; 66(2):341-53. PubMed ID: 21219511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usefulness of Physcomitrella patens for studying plant organogenesis.
    Bonhomme S; Nogué F; Rameau C; Schaefer DG
    Methods Mol Biol; 2013; 959():21-43. PubMed ID: 23299666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root development: signaling down and around.
    Wysocka-Diller JW; Benfey PN
    Bioessays; 1997 Nov; 19(11):959-65. PubMed ID: 9394618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organogenesis of legume root nodules.
    Patriarca EJ; Tatè R; Ferraioli S; Iaccarino M
    Int Rev Cytol; 2004; 234():201-62. PubMed ID: 15066376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genic DNA methylation changes during in vitro organogenesis: organ specificity and conservation between parental lines of epialleles.
    Maury S; Trap-Gentil MV; Hébrard C; Weyens G; Delaunay A; Barnes S; Lefebvre M; Joseph C
    Physiol Plant; 2012 Nov; 146(3):321-35. PubMed ID: 22486767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and genomic dissection of maize root development and architecture.
    Hochholdinger F; Tuberosa R
    Curr Opin Plant Biol; 2009 Apr; 12(2):172-7. PubMed ID: 19157956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ARL1, a LOB-domain protein required for adventitious root formation in rice.
    Liu H; Wang S; Yu X; Yu J; He X; Zhang S; Shou H; Wu P
    Plant J; 2005 Jul; 43(1):47-56. PubMed ID: 15960615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.
    Cockram J; Jones H; Leigh FJ; O'Sullivan D; Powell W; Laurie DA; Greenland AJ
    J Exp Bot; 2007; 58(6):1231-44. PubMed ID: 17420173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family.
    Liu S; Wang J; Wang L; Wang X; Xue Y; Wu P; Shou H
    Cell Res; 2009 Sep; 19(9):1110-9. PubMed ID: 19546891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.