These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23299847)

  • 41. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38.
    Bai X; Ma D; Liu A; Shen X; Wang QJ; Liu Y; Jiang Y
    Science; 2007 Nov; 318(5852):977-80. PubMed ID: 17991864
    [TBL] [Abstract][Full Text] [Related]  

  • 42. COMBINES-CID: An Efficient Method for De Novo Engineering of Highly Specific Chemically Induced Protein Dimerization Systems.
    Kang S; Davidsen K; Gomez-Castillo L; Jiang H; Fu X; Li Z; Liang Y; Jahn M; Moussa M; DiMaio F; Gu L
    J Am Chem Soc; 2019 Jul; 141(28):10948-10952. PubMed ID: 31260282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is Nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant?
    Nussinov R; Tsai CJ; Jang H
    Semin Cancer Biol; 2019 Feb; 54():114-120. PubMed ID: 29307569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Creating Highly Specific Chemically Induced Protein Dimerization Systems by Stepwise Phage Selection of a Combinatorial Single-Domain Antibody Library.
    Gomez-Castillo L; Watanabe K; Jiang H; Kang S; Gu L
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32009651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical Manipulation of Subcellular Protein Translocation Using a Photoactivatable Covalent Labeling System.
    Kowada T; Arai K; Yoshimura A; Matsui T; Kikuchi K; Mizukami S
    Angew Chem Int Ed Engl; 2021 May; 60(20):11378-11383. PubMed ID: 33644979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small molecules targeting heterotrimeric G proteins.
    Ayoub MA
    Eur J Pharmacol; 2018 May; 826():169-178. PubMed ID: 29522725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tandem orthogonal chemically induced dimerization.
    Voss S; Wu YW
    Chembiochem; 2013 Sep; 14(13):1525-7. PubMed ID: 23939812
    [No Abstract]   [Full Text] [Related]  

  • 48. Intensiometric biosensors visualize the activity of multiple small GTPases in vivo.
    Kim J; Lee S; Jung K; Oh WC; Kim N; Son S; Jo Y; Kwon HB; Heo WD
    Nat Commun; 2019 Jan; 10(1):211. PubMed ID: 30643148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RAF kinase dimerization: implications for drug discovery and clinical outcomes.
    Brummer T; McInnes C
    Oncogene; 2020 May; 39(21):4155-4169. PubMed ID: 32269299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pharmacological targeting of RAS: Recent success with direct inhibitors.
    O'Bryan JP
    Pharmacol Res; 2019 Jan; 139():503-511. PubMed ID: 30366101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of transforming growth factor beta signal transduction by small GTPases.
    Kardassis D; Murphy C; Fotsis T; Moustakas A; Stournaras C
    FEBS J; 2009 Jun; 276(11):2947-65. PubMed ID: 19490100
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner.
    Wong SW; Kwon MJ; Choi AM; Kim HP; Nakahira K; Hwang DH
    J Biol Chem; 2009 Oct; 284(40):27384-92. PubMed ID: 19648648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
    Killoran RC; Smith MJ
    J Biol Chem; 2019 Jun; 294(25):9937-9948. PubMed ID: 31088913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of prenylated small GTP-binding proteins in the regulation of osteoclast function.
    Coxon FP; Rogers MJ
    Calcif Tissue Int; 2003 Jan; 72(1):80-4. PubMed ID: 12370802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A bioorthogonal small-molecule-switch system for controlling protein function in live cells.
    Liu P; Calderon A; Konstantinidis G; Hou J; Voss S; Chen X; Li F; Banerjee S; Hoffmann JE; Theiss C; Dehmelt L; Wu YW
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10049-55. PubMed ID: 25065762
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases.
    Watanabe T; Sato K; Kaibuchi K
    Cold Spring Harb Perspect Biol; 2009 Sep; 1(3):a003020. PubMed ID: 20066109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An inducible system for in vitro and in vivo Fas activation using FKBP-FRB-rapamycin complex.
    Kim S; Shin J; Oh H; Ahn S; Kim N; Heo WD
    Biochem Biophys Res Commun; 2020 Mar; 523(2):473-480. PubMed ID: 31882118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Small GTPase and regulation of inflammation response in atherogenesis.
    Lu Y; Peng W; Xu Y
    J Cardiovasc Pharmacol; 2013 Oct; 62(4):331-40. PubMed ID: 23921305
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways.
    Inoue T; Heo WD; Grimley JS; Wandless TJ; Meyer T
    Nat Methods; 2005 Jun; 2(6):415-8. PubMed ID: 15908919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.