BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23299885)

  • 1. A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells.
    Zhang R; Mjoseng HK; Hoeve MA; Bauer NG; Pells S; Besseling R; Velugotla S; Tourniaire G; Kishen RE; Tsenkina Y; Armit C; Duffy CR; Helfen M; Edenhofer F; de Sousa PA; Bradley M
    Nat Commun; 2013; 4():1335. PubMed ID: 23299885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of human pluripotent stem cells to feeder-free conditions in chemically defined medium with enzymatic single-cell passaging.
    Stover AE; Schwartz PH
    Methods Mol Biol; 2011; 767():137-46. PubMed ID: 21822872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines.
    Hakala H; Rajala K; Ojala M; Panula S; Areva S; Kellomäki M; Suuronen R; Skottman H
    Tissue Eng Part A; 2009 Jul; 15(7):1775-85. PubMed ID: 19132919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoresponsive hydrogel maintains the mouse embryonic stem cell "naïve" pluripotency phenotype.
    Mangani C; Lilienkampf A; Roy M; de Sousa PA; Bradley M
    Biomater Sci; 2015 Oct; 3(10):1371-5. PubMed ID: 26372076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for culturing mouse and human embryonic stem cells.
    Lin S; Talbot P
    Methods Mol Biol; 2011; 690():31-56. PubMed ID: 21042983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noggin maintains pluripotency of human embryonic stem cells grown on Matrigel.
    Chaturvedi G; Simone PD; Ain R; Soares MJ; Wolfe MW
    Cell Prolif; 2009 Aug; 42(4):425-33. PubMed ID: 19500111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells.
    Jang M; Lee ST; Kim JW; Yang JH; Yoon JK; Park JC; Ryoo HM; van der Vlies AJ; Ahn JY; Hubbell JA; Song YS; Lee G; Lim JM
    Biomaterials; 2013 May; 34(14):3571-80. PubMed ID: 23422594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of human embryonic stem cells in adherent and in chemically defined culture conditions.
    Vallier L; Pedersen R
    Curr Protoc Stem Cell Biol; 2008 Mar; Chapter 1():Unit 1D.4.1-1D.4.7. PubMed ID: 18770639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion.
    Dias AD; Elicson JM; Murphy WL
    Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28509413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short laminin peptide for improved neural stem cell growth.
    Li X; Liu X; Josey B; Chou CJ; Tan Y; Zhang N; Wen X
    Stem Cells Transl Med; 2014 May; 3(5):662-70. PubMed ID: 24692587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking.
    Englund MC; Caisander G; Noaksson K; Emanuelsson K; Lundin K; Bergh C; Hansson C; Semb H; Strehl R; Hyllner J
    In Vitro Cell Dev Biol Anim; 2010 Apr; 46(3-4):217-30. PubMed ID: 20177996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Induction of Cerebral Organoids From Human Induced Pluripotent Stem Cells Using a Chemically Defined Hydrogel and Defined Cell Culture Medium.
    Lindborg BA; Brekke JH; Vegoe AL; Ulrich CB; Haider KT; Subramaniam S; Venhuizen SL; Eide CR; Orchard PJ; Chen W; Wang Q; Pelaez F; Scott CM; Kokkoli E; Keirstead SA; Dutton JR; Tolar J; O'Brien TD
    Stem Cells Transl Med; 2016 Jul; 5(7):970-9. PubMed ID: 27177577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of dendritic cells from human embryonic stem cells.
    Silk KM; Tseng SY; Nishimoto KP; Lebkowski J; Reddy A; Fairchild PJ
    Methods Mol Biol; 2011; 767():449-61. PubMed ID: 21822895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
    Ausubel LJ; Lopez PM; Couture LA
    Methods Mol Biol; 2011; 767():147-59. PubMed ID: 21822873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeder-independent culture systems for human pluripotent stem cells.
    Moody J
    Methods Mol Biol; 2013; 946():507-21. PubMed ID: 23179852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serum-free and feeder-free culture conditions for human embryonic stem cells.
    Vallier L
    Methods Mol Biol; 2011; 690():57-66. PubMed ID: 21042984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings.
    Villa-Diaz LG; Ross AM; Lahann J; Krebsbach PH
    Stem Cells; 2013 Jan; 31(1):1-7. PubMed ID: 23081828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments.
    Carlson AL; Florek CA; Kim JJ; Neubauer T; Moore JC; Cohen RI; Kohn J; Grumet M; Moghe PV
    FASEB J; 2012 Aug; 26(8):3240-51. PubMed ID: 22542683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From MEFs to Matrigel 3: passaging hESCs from Matrigel onto Matrigel.
    Zhang J; Khvorostov I; Teitell M
    J Vis Exp; 2008 Jun; (16):. PubMed ID: 19066542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion of human embryonic stem cells on cellulose microcarriers.
    Chen AK; Chen X; Choo AB; Reuveny S; Oh SK
    Curr Protoc Stem Cell Biol; 2010 Sep; Chapter 1():Unit 1C.11. PubMed ID: 20814936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.