These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23299972)

  • 1. Arsenic-transforming microbes and their role in biomining processes.
    Drewniak L; Sklodowska A
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7728-39. PubMed ID: 23299972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metals, minerals and microbes: geomicrobiology and bioremediation.
    Gadd GM
    Microbiology (Reading); 2010 Mar; 156(Pt 3):609-643. PubMed ID: 20019082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils.
    Zhang SY; Xiao X; Chen SC; Zhu YG; Sun GX; Konstantinidis KT
    Appl Environ Microbiol; 2021 Sep; 87(20):e0138321. PubMed ID: 34378947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.
    Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils.
    Lee KY; Kim KW; Kim SO
    Environ Geochem Health; 2010 Feb; 32(1):31-44. PubMed ID: 19412738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiology of inorganic arsenic: From metabolism to bioremediation.
    Yamamura S; Amachi S
    J Biosci Bioeng; 2014 Jul; 118(1):1-9. PubMed ID: 24507904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotechnology and the Mine of Tomorrow.
    Dunbar WS
    Trends Biotechnol; 2017 Jan; 35(1):79-89. PubMed ID: 27612568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.
    Majumder A; Bhattacharyya K; Kole SC; Ghosh S
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5645-53. PubMed ID: 23443943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions.
    Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R
    Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbes and metals: interactions in the environment.
    Haferburg G; Kothe E
    J Basic Microbiol; 2007 Dec; 47(6):453-67. PubMed ID: 18072246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.
    Dhuldhaj UP; Yadav IC; Singh S; Sharma NK
    Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil.
    Wang X; Chen X; Yang J; Wang Z; Sun G
    J Environ Sci (China); 2009; 21(11):1562-8. PubMed ID: 20108691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbes involved in arsenic mobilization and respiration: a review on isolation, identification, isolates and implications.
    Mazumder P; Sharma SK; Taki K; Kalamdhad AS; Kumar M
    Environ Geochem Health; 2020 Oct; 42(10):3443-3469. PubMed ID: 32170513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?
    Wu F; Wang JT; Yang J; Li J; Zheng YM
    Environ Pollut; 2016 Jun; 213():949-956. PubMed ID: 27055093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings.
    Ouyang B; Lu X; Li J; Liu H
    Sci Total Environ; 2019 Jun; 670():1008-1018. PubMed ID: 31018416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.