These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 23300403)

  • 21. Form and function in cell motility: from fibroblasts to keratocytes.
    Herant M; Dembo M
    Biophys J; 2010 Apr; 98(8):1408-17. PubMed ID: 20409459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New physical concepts for cell amoeboid motion.
    Evans E
    Biophys J; 1993 Apr; 64(4):1306-22. PubMed ID: 8494986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redundant mechanisms for stable cell locomotion revealed by minimal models.
    Wolgemuth CW; Stajic J; Mogilner A
    Biophys J; 2011 Aug; 101(3):545-53. PubMed ID: 21806922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic models of cell protrusion arising from spatiotemporal signaling and adhesion dynamics.
    Welf ES; Haugh JM
    Methods Cell Biol; 2012; 110():223-41. PubMed ID: 22482951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge.
    Craig EM; Stricker J; Gardel M; Mogilner A
    Phys Biol; 2015 May; 12(3):035002. PubMed ID: 25969948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico reconstitution of actin-based symmetry breaking and motility.
    Dayel MJ; Akin O; Landeryou M; Risca V; Mogilner A; Mullins RD
    PLoS Biol; 2009 Sep; 7(9):e1000201. PubMed ID: 19771152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The shift in GH3 cell shape and cell motility is dependent on MLCK and ROCK.
    Ávila-Rodríguez D; Solano Agama C; González-Pozos S; Vicente Méndez-Méndez J; Ortiz Plata A; Arreola-Mendoza L; Mendoza-Garrido ME
    Exp Cell Res; 2017 May; 354(1):1-17. PubMed ID: 28300565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple travelling-wave solutions in a minimal model for cell motility.
    Kimpton LS; Whiteley JP; Waters SL; King JR; Oliver JM
    Math Med Biol; 2013 Sep; 30(3):241-72. PubMed ID: 22789545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shapes and self-movement in protocell systems.
    Suzuki K; Ikegami T
    Artif Life; 2009; 15(1):59-70. PubMed ID: 18855564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spots, stripes, and spiral waves in models for static and motile cells : GTPase patterns in cells.
    Liu Y; Rens EG; Edelstein-Keshet L
    J Math Biol; 2021 Mar; 82(4):28. PubMed ID: 33660145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematics of cell motility: have we got its number?
    Mogilner A
    J Math Biol; 2009 Jan; 58(1-2):105-34. PubMed ID: 18461331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous polarization in eukaryotic gradient sensing: a mathematical model based on mutual inhibition of frontness and backness pathways.
    Narang A
    J Theor Biol; 2006 Jun; 240(4):538-53. PubMed ID: 16343548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models.
    Giese W; Eigel M; Westerheide S; Engwer C; Klipp E
    Phys Biol; 2015 Nov; 12(6):066014. PubMed ID: 26599916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A computational model of ameboid deformation and locomotion.
    Bottino DC; Fauci LJ
    Eur Biophys J; 1998; 27(5):532-9. PubMed ID: 9760734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell Size, Mechanical Tension, and GTPase Signaling in the Single Cell.
    Buttenschön A; Liu Y; Edelstein-Keshet L
    Bull Math Biol; 2020 Feb; 82(2):28. PubMed ID: 32016583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water flux in cell motility: expanding the mechanisms of membrane protrusion.
    Loitto VM; Karlsson T; Magnusson KE
    Cell Motil Cytoskeleton; 2009 May; 66(5):237-47. PubMed ID: 19347962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling cell motility and chemotaxis with evolving surface finite elements.
    Elliott CM; Stinner B; Venkataraman C
    J R Soc Interface; 2012 Nov; 9(76):3027-44. PubMed ID: 22675164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A minimal physical model captures the shapes of crawling cells.
    Tjhung E; Tiribocchi A; Marenduzzo D; Cates ME
    Nat Commun; 2015 Jan; 6():5420. PubMed ID: 25607536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.
    Buttenschön A; Hillen T; Gerisch A; Painter KJ
    J Math Biol; 2018 Jan; 76(1-2):429-456. PubMed ID: 28597056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.