These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23300403)

  • 41. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.
    Buttenschön A; Hillen T; Gerisch A; Painter KJ
    J Math Biol; 2018 Jan; 76(1-2):429-456. PubMed ID: 28597056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms controlling cell size and shape during isotropic cell spreading.
    Xiong Y; Rangamani P; Fardin MA; Lipshtat A; Dubin-Thaler B; Rossier O; Sheetz MP; Iyengar R
    Biophys J; 2010 May; 98(10):2136-46. PubMed ID: 20483321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mathematical model for the effects of adhesion and mechanics on cell migration speed.
    DiMilla PA; Barbee K; Lauffenburger DA
    Biophys J; 1991 Jul; 60(1):15-37. PubMed ID: 1883934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mathematical models of cell motility.
    Flaherty B; McGarry JP; McHugh PE
    Cell Biochem Biophys; 2007; 49(1):14-28. PubMed ID: 17873336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes.
    Barnhart E; Lee KC; Allen GM; Theriot JA; Mogilner A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5045-50. PubMed ID: 25848042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated characterization of cell shape changes during amoeboid motility by skeletonization.
    Xiong Y; Kabacoff C; Franca-Koh J; Devreotes PN; Robinson DN; Iglesias PA
    BMC Syst Biol; 2010 Mar; 4():33. PubMed ID: 20334652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytopede: a three-dimensional tool for modeling cell motility on a flat surface.
    Herant M; Dembo M
    J Comput Biol; 2010 Dec; 17(12):1639-77. PubMed ID: 20958108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis.
    Feng S; Zhu W
    J Theor Biol; 2014 Dec; 363():235-46. PubMed ID: 25167788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of shape determination in motile cells.
    Keren K; Pincus Z; Allen GM; Barnhart EL; Marriott G; Mogilner A; Theriot JA
    Nature; 2008 May; 453(7194):475-80. PubMed ID: 18497816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mathematical modelling in cell migration: tackling biochemistry in changing geometries.
    Stinner B; Bretschneider T
    Biochem Soc Trans; 2020 Apr; 48(2):419-428. PubMed ID: 32239187
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substrate curvature regulates cell migration.
    He X; Jiang Y
    Phys Biol; 2017 May; 14(3):035006. PubMed ID: 28535145
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bridging the gap between single-cell migration and collective dynamics.
    Thüroff F; Goychuk A; Reiter M; Frey E
    Elife; 2019 Dec; 8():. PubMed ID: 31808744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Causal mapping as a tool to mechanistically interpret phenomena in cell motility: application to cortical oscillations in spreading cells.
    Weinreb GE; Elston TC; Jacobson K
    Cell Motil Cytoskeleton; 2006 Sep; 63(9):523-32. PubMed ID: 16800006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization.
    Marijuán PC; del Moral R; Navarro J
    Biosystems; 2013 Oct; 114(1):8-24. PubMed ID: 23850535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward the reconstitution of synthetic cell motility.
    Siton-Mendelson O; Bernheim-Groswasser A
    Cell Adh Migr; 2016 Sep; 10(5):461-474. PubMed ID: 27019160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polarization and movement of keratocytes: a multiscale modelling approach.
    Marée AF; Jilkine A; Dawes A; Grieneisen VA; Edelstein-Keshet L
    Bull Math Biol; 2006 Jul; 68(5):1169-211. PubMed ID: 16794915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell Mechanics at the Rear Act to Steer the Direction of Cell Migration.
    Allen GM; Lee KC; Barnhart EL; Tsuchida MA; Wilson CA; Gutierrez E; Groisman A; Theriot JA; Mogilner A
    Cell Syst; 2020 Sep; 11(3):286-299.e4. PubMed ID: 32916096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane tension controls adhesion positioning at the leading edge of cells.
    Pontes B; Monzo P; Gole L; Le Roux AL; Kosmalska AJ; Tam ZY; Luo W; Kan S; Viasnoff V; Roca-Cusachs P; Tucker-Kellogg L; Gauthier NC
    J Cell Biol; 2017 Sep; 216(9):2959-2977. PubMed ID: 28687667
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell motility dependence on adhesive wetting.
    Cao Y; Karmakar R; Ghabache E; Gutierrez E; Zhao Y; Groisman A; Levine H; Camley BA; Rappel WJ
    Soft Matter; 2019 Feb; 15(9):2043-2050. PubMed ID: 30724956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.