These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23300427)

  • 21. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus.
    Kruse T; Lobedanz S; Berthelsen NM; Søgaard-Andersen L
    Mol Microbiol; 2001 Apr; 40(1):156-68. PubMed ID: 11298283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during
    Hoang Y; Franklin JL; Dufour YS; Kroos L
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34732578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus.
    Jelsbak L; Søgaard-Andersen L
    J Microbiol Methods; 2003 Dec; 55(3):829-39. PubMed ID: 14607429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus.
    Cho K; Zusman DR
    Mol Microbiol; 1999 Nov; 34(4):714-25. PubMed ID: 10564511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of beta-lactamase influences the course of development in Myxococcus xanthus.
    O'Connor KA; Zusman DR
    J Bacteriol; 1999 Oct; 181(20):6319-31. PubMed ID: 10515921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myxobacterial tools for social interactions.
    Pathak DT; Wei X; Wall D
    Res Microbiol; 2012; 163(9-10):579-91. PubMed ID: 23123306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative genomic analysis of fruiting body formation in Myxococcales.
    Huntley S; Hamann N; Wegener-Feldbrügge S; Treuner-Lange A; Kube M; Reinhardt R; Klages S; Müller R; Ronning CM; Nierman WC; Søgaard-Andersen L
    Mol Biol Evol; 2011 Feb; 28(2):1083-97. PubMed ID: 21037205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Small acid-soluble proteins with intrinsic disorder are required for UV resistance in Myxococcus xanthus spores.
    Dahl JL; Fordice D
    J Bacteriol; 2011 Jun; 193(12):3042-8. PubMed ID: 21515768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.
    Bullock HA; Shen H; Boynton TO; Shimkets LJ
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507089
    [No Abstract]   [Full Text] [Related]  

  • 30. Beta-D-Allose inhibits fruiting body formation and sporulation in Myxococcus xanthus.
    Chavira M; Cao N; Le K; Riar T; Moradshahi N; McBride M; Lux R; Shi W
    J Bacteriol; 2007 Jan; 189(1):169-78. PubMed ID: 17056749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Operon required for fruiting body development in Myxococcus xanthus.
    Kim D; Chung J; Hyun H; Lee C; Lee K; Cho K
    J Microbiol Biotechnol; 2009 Nov; 19(11):1288-94. PubMed ID: 19996678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutral and Phospholipids of the Myxococcus xanthus Lipodome during Fruiting Body Formation and Germination.
    Ahrendt T; Wolff H; Bode HB
    Appl Environ Microbiol; 2015 Oct; 81(19):6538-47. PubMed ID: 26162876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homospermidine Lipids: A Compound Class Specifically Formed during Fruiting Body Formation of Myxococcus xanthus DK1622.
    Hoffmann M; Auerbach D; Panter F; Hoffmann T; Dorrestein PC; Müller R
    ACS Chem Biol; 2018 Jan; 13(1):273-280. PubMed ID: 29185703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directional reversals enable Myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation.
    Thutupalli S; Sun M; Bunyak F; Palaniappan K; Shaevitz JW
    J R Soc Interface; 2015 Aug; 12(109):20150049. PubMed ID: 26246416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying aggregation dynamics during Myxococcus xanthus development.
    Zhang H; Angus S; Tran M; Xie C; Igoshin OA; Welch RD
    J Bacteriol; 2011 Oct; 193(19):5164-70. PubMed ID: 21784940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Describing Myxococcus xanthus aggregation using Ostwald ripening equations for thin liquid films.
    Bahar F; Pratt-Szeliga PC; Angus S; Guo J; Welch RD
    Sci Rep; 2014 Sep; 4():6376. PubMed ID: 25231319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetics of gliding motility and development in Myxococcus xanthus.
    Hartzell PL; Youderian P
    Arch Microbiol; 1995 Nov; 164(5):309-23. PubMed ID: 8572884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication.
    Marcos-Torres FJ; Volz C; Müller R
    Nat Commun; 2020 Nov; 11(1):5563. PubMed ID: 33149152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Starvation-independent sporulation in Myxococcus xanthus involves the pathway for beta-lactamase induction and provides a mechanism for competitive cell survival.
    O'Connor KA; Zusman DR
    Mol Microbiol; 1997 May; 24(4):839-50. PubMed ID: 9194710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus.
    Rasmussen AA; Søgaard-Andersen L
    J Bacteriol; 2003 Sep; 185(18):5452-64. PubMed ID: 12949097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.