These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23300751)

  • 21. Flexural rigidity of hawkmoth antennae depends on the bending direction.
    Puchalski A; McCarthy Z; Palaoro AV; Salamatin AA; Nagy-Mehesz A; Korneva G; Beard CE; Owens J; Adler PH; Kornev KG
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38944324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta.
    Schendzielorz T; Schirmer K; Stolte P; Stengl M
    PLoS One; 2015; 10(3):e0121230. PubMed ID: 25785721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of visual and antennal mechanosensory feedback during head stabilization in hawkmoths.
    Chatterjee P; Prusty AD; Mohan U; Sane SP
    Elife; 2022 Jun; 11():. PubMed ID: 35758646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insect antennae: Coupling blood pressure with cuticle deformation to control movement.
    Donley G; Sun Y; Pass G; Adler PH; Beard CE; Owens J; Kornev KG
    Acta Biomater; 2022 Jul; 147():102-119. PubMed ID: 35649508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth,
    Copley S; Parthasarathy K; Willis MA
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 29967220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Balloon-assisted flight of radio-controlled insect biobots.
    Bozkurt A; F Gilmour R; Lal A
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2304-7. PubMed ID: 19692306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Schlieren photography on freely flying hawkmoth.
    Liu Y; Roll J; Van Kooten S; Deng X
    Biol Lett; 2018 May; 14(5):. PubMed ID: 29769300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Olfactory modulation of flight in Drosophila is sensitive, selective and rapid.
    Bhandawat V; Maimon G; Dickinson MH; Wilson RI
    J Exp Biol; 2010 Nov; 213(Pt 21):3625-35. PubMed ID: 20952610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Airflow and optic flow mediate antennal positioning in flying honeybees.
    Roy Khurana T; Sane SP
    Elife; 2016 Apr; 5():. PubMed ID: 27097104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuromuscular control of free-flight yaw turns in the hawkmoth Manduca sexta.
    Springthorpe D; Fernández MJ; Hedrick TL
    J Exp Biol; 2012 May; 215(Pt 10):1766-74. PubMed ID: 22539744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Odor tracking flight of male Manduca sexta moths along plumes of different cross-sectional area.
    Willis MA; Ford EA; Avondet JL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):1015-36. PubMed ID: 24081678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitric oxide has differential effects on currents in different subsets of Manduca sexta antennal lobe neurons.
    Higgins M; Miller M; Nighorn A
    PLoS One; 2012; 7(8):e42556. PubMed ID: 22880032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta.
    Hedrick TL; Robinson AK
    Biol Lett; 2010 Jun; 6(3):422-5. PubMed ID: 20181557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reception and learning of electric fields in bees.
    Greggers U; Koch G; Schmidt V; Dürr A; Floriou-Servou A; Piepenbrock D; Göpfert MC; Menzel R
    Proc Biol Sci; 2013 May; 280(1759):20130528. PubMed ID: 23536603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial Representation of Feeding and Oviposition Odors in the Brain of a Hawkmoth.
    Bisch-Knaden S; Dahake A; Sachse S; Knaden M; Hansson BS
    Cell Rep; 2018 Feb; 22(9):2482-2492. PubMed ID: 29490282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible split-ring electrode for insect flight biasing using multisite neural stimulation.
    Tsang WM; Stone AL; Aldworth ZN; Hildebrand JG; Daniel TL; Akinwande AI; Voldman J
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1757-64. PubMed ID: 20176539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.