BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23300837)

  • 21. Down-regulation of N-acetylglucosaminyltransferase V by tumorigenesis- or metastasis-suppressor gene and its relation to metastatic potential of human hepatocarcinoma cells.
    Guo HB; Liu F; Zhao JH; Chen HL
    J Cell Biochem; 2000 Sep; 79(3):370-85. PubMed ID: 10972975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans.
    Link-Lenczowski P; Bubka M; Balog CIA; Koeleman CAM; Butters TD; Wuhrer M; Lityńska A
    Glycoconj J; 2018 Apr; 35(2):217-231. PubMed ID: 29502191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity.
    Yamamoto H; Swoger J; Greene S; Saito T; Hurh J; Sweeley C; Leestma J; Mkrdichian E; Cerullo L; Nishikawa A; Ihara Y; Taniguchi N; Moskal JR
    Cancer Res; 2000 Jan; 60(1):134-42. PubMed ID: 10646865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased susceptibility to apoptosis of human hepatocarcinoma cells transfected with antisense N-acetylglucosaminyltransferase V cDNA.
    Guo HB; Liu F; Chen HL
    Biochem Biophys Res Commun; 1999 Oct; 264(2):509-17. PubMed ID: 10529394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V.
    Lee JK; Matthews RT; Lim JM; Swanier K; Wells L; Pierce JM
    J Biol Chem; 2012 Aug; 287(34):28526-36. PubMed ID: 22715095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. All-trans-retinoic acid increases adhesion to endothelium of the human promyelocytic leukaemia cell line NB4.
    Marchetti M; Falanga A; Giovanelli S; Oldani E; Barbui T
    Br J Haematol; 1996 May; 93(2):360-6. PubMed ID: 8639429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a high-mannose ICAM-1 glycoform: effects of ICAM-1 hypoglycosylation on monocyte adhesion and outside in signaling.
    Scott DW; Dunn TS; Ballestas ME; Litovsky SH; Patel RP
    Am J Physiol Cell Physiol; 2013 Jul; 305(2):C228-37. PubMed ID: 23703526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator.
    Gu J; Taniguchi N
    Cell Adh Migr; 2008; 2(4):243-5. PubMed ID: 19262156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An N-glycosylation site on the beta-propeller domain of the integrin alpha5 subunit plays key roles in both its function and site-specific modification by beta1,4-N-acetylglucosaminyltransferase III.
    Sato Y; Isaji T; Tajiri M; Yoshida-Yamamoto S; Yoshinaka T; Somehara T; Fukuda T; Wada Y; Gu J
    J Biol Chem; 2009 May; 284(18):11873-81. PubMed ID: 19276077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Substrate Preference and Interplay of Fucosyltransferase 8 and N-Acetylglucosaminyltransferases.
    Tseng TH; Lin TW; Chen CY; Chen CH; Lin JL; Hsu TL; Wong CH
    J Am Chem Soc; 2017 Jul; 139(28):9431-9434. PubMed ID: 28678517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship between metastasis-associated phenotypes and N-glycan structure of surface glycoproteins in human hepatocarcinoma cells.
    Guo HB; Zhang Y; Chen HL
    J Cancer Res Clin Oncol; 2001 Apr; 127(4):231-6. PubMed ID: 11315257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of N-acetylglucosaminyltransferase III disrupts the tyrosine phosphorylation of Trk with resultant signaling dysfunction in PC12 cells treated with nerve growth factor.
    Ihara Y; Sakamoto Y; Mihara M; Shimizu K; Taniguchi N
    J Biol Chem; 1997 Apr; 272(15):9629-34. PubMed ID: 9092490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of N-Acetylglucosaminyltransferase III Suppresses α2,3-Sialylation, and Its Distinctive Functions in Cell Migration Are Attributed to α2,6-Sialylation Levels.
    Lu J; Isaji T; Im S; Fukuda T; Kameyama A; Gu J
    J Biol Chem; 2016 Mar; 291(11):5708-5720. PubMed ID: 26801611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wnt/beta-catenin signaling down-regulates N-acetylglucosaminyltransferase III expression: the implications of two mutually exclusive pathways for regulation.
    Xu Q; Akama R; Isaji T; Lu Y; Hashimoto H; Kariya Y; Fukuda T; Du Y; Gu J
    J Biol Chem; 2011 Feb; 286(6):4310-8. PubMed ID: 21115490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bisecting GlcNAc Is a General Suppressor of Terminal Modification of
    Nakano M; Mishra SK; Tokoro Y; Sato K; Nakajima K; Yamaguchi Y; Taniguchi N; Kizuka Y
    Mol Cell Proteomics; 2019 Oct; 18(10):2044-2057. PubMed ID: 31375533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-acetylglucosaminyltransferase IVa regulates metastatic potential of mouse hepatocarcinoma cells through glycosylation of CD147.
    Fan J; Wang S; Yu S; He J; Zheng W; Zhang J
    Glycoconj J; 2012 Aug; 29(5-6):323-34. PubMed ID: 22736280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion of mouse embryo fibroblast N-acetylglucosaminyltransferase V stimulates alpha5beta1 integrin expression mediated by the protein kinase C signaling pathway.
    Guo HB; Lee I; Bryan BT; Pierce M
    J Biol Chem; 2005 Mar; 280(9):8332-42. PubMed ID: 15615721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. N-acetylglucosaminyltransferase V mediates cell migration and invasion of mouse mammary tumor cells 4TO7 via RhoA and Rac1 signaling pathway.
    Zhao Y; Li J; Xing Y; Wang J; Lu C; Xin X; Geng M
    Mol Cell Biochem; 2008 Feb; 309(1-2):199-208. PubMed ID: 18060576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice.
    Takamatsu S; Antonopoulos A; Ohtsubo K; Ditto D; Chiba Y; Le DT; Morris HR; Haslam SM; Dell A; Marth JD; Taniguchi N
    Glycobiology; 2010 Jan; 20(4):485-97. PubMed ID: 20015870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The absence of core fucose up-regulates GnT-III and Wnt target genes: a possible mechanism for an adaptive response in terms of glycan function.
    Kurimoto A; Kitazume S; Kizuka Y; Nakajima K; Oka R; Fujinawa R; Korekane H; Yamaguchi Y; Wada Y; Taniguchi N
    J Biol Chem; 2014 Apr; 289(17):11704-11714. PubMed ID: 24619415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.