BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23300929)

  • 1. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.
    Pombert JF; James ER; Janouškovec J; Keeling PJ
    PLoS One; 2012; 7(12):e53433. PubMed ID: 23300929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.
    Hrdá Š; Fousek J; Szabová J; Hampl V; Vlček Č
    PLoS One; 2012; 7(3):e33746. PubMed ID: 22448269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes.
    Karnkowska A; Bennett MS; Triemer RE
    Sci Rep; 2018 Oct; 8(1):16071. PubMed ID: 30375469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.
    Thompson MD; Copertino DW; Thompson E; Favreau MR; Hallick RB
    Nucleic Acids Res; 1995 Dec; 23(23):4745-52. PubMed ID: 8532514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids.
    Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H
    BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?
    Doetsch NA; Thompson MD; Hallick RB
    Mol Biol Evol; 1998 Jan; 15(1):76-86. PubMed ID: 9491607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twintrons are not unique to the Euglena chloroplast genome: structure and evolution of a plastome cpn60 gene from a cryptomonad.
    Maier UG; Rensing SA; Igloi GL; Maerz M
    Mol Gen Genet; 1995 Jan; 246(1):128-31. PubMed ID: 7823908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenging the Importance of Plastid Genome Structure Conservation: New Insights From Euglenophytes.
    Maciszewski K; Fells A; Karnkowska A
    Mol Biol Evol; 2022 Dec; 39(12):. PubMed ID: 36403966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    Protist; 2012 Nov; 163(6):832-43. PubMed ID: 22364772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts.
    Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ
    Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturyoshka: A maturase inside a maturase, and other peculiarities of the novel chloroplast genomes of marine euglenophytes.
    Maciszewski K; Dabbagh N; Preisfeld A; Karnkowska A
    Mol Phylogenet Evol; 2022 May; 170():107441. PubMed ID: 35189368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences.
    Breglia SA; Slamovits CH; Leander BS
    J Eukaryot Microbiol; 2007; 54(1):86-92. PubMed ID: 17300525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida).
    Yamaguchi A; Yubuki N; Leander BS
    BMC Evol Biol; 2012 Mar; 12():29. PubMed ID: 22401606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids.
    Milanowski R; Karnkowska A; Ishikawa T; Zakryś B
    Mol Biol Evol; 2014 Mar; 31(3):584-93. PubMed ID: 24296662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary Origin of Euglena.
    Zakryś B; Milanowski R; Karnkowska A
    Adv Exp Med Biol; 2017; 979():3-17. PubMed ID: 28429314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Did trypanosomatid parasites contain a eukaryotic alga-derived plastid in their evolutionary past?
    Bodył A; Mackiewicz P; Milanowski R
    J Parasitol; 2010 Apr; 96(2):465-75. PubMed ID: 20540605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two new group-II twintrons in the Euglena gracilis chloroplast are absent in basally branching Euglena species.
    Thompson MD; Zhang L; Hong L; Hallick RB
    Curr Genet; 1997 Jan; 31(1):89-95. PubMed ID: 9000385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral transfer of introns in the cryptophyte plastid genome.
    Khan H; Archibald JM
    Nucleic Acids Res; 2008 May; 36(9):3043-53. PubMed ID: 18397952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.