BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23300929)

  • 21. Parallel loss of plastid introns and their maturase in the genus Cuscuta.
    McNeal JR; Kuehl JV; Boore JL; Leebens-Mack J; dePamphilis CW
    PLoS One; 2009 Jun; 4(6):e5982. PubMed ID: 19543388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis.
    Hadariová L; Vesteg M; Birčák E; Schwartzbach SD; Krajčovič J
    Curr Genet; 2017 May; 63(2):331-341. PubMed ID: 27553633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa.
    Gockel G; Hachtel W
    Protist; 2000 Dec; 151(4):347-51. PubMed ID: 11212895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae).
    Jansen RK; Wojciechowski MF; Sanniyasi E; Lee SB; Daniell H
    Mol Phylogenet Evol; 2008 Sep; 48(3):1204-17. PubMed ID: 18638561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mixed group II/group III twintron in the Euglena gracilis chloroplast ribosomal protein S3 gene: evidence for intron insertion during gene evolution.
    Copertino DW; Christopher DA; Hallick RB
    Nucleic Acids Res; 1991 Dec; 19(23):6491-7. PubMed ID: 1721702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends.
    Dabbagh N; Preisfeld A
    J Eukaryot Microbiol; 2017 Jan; 64(1):31-44. PubMed ID: 27254767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum.
    Kamikawa R; Tanifuji G; Kawachi M; Miyashita H; Hashimoto T; Inagaki Y
    Genome Biol Evol; 2015 Apr; 7(4):1133-40. PubMed ID: 25840416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hoarding and horizontal transfer led to an expanded gene and intron repertoire in the plastid genome of the diatom, Toxarium undulatum (Bacillariophyta).
    Ruck EC; Linard SR; Nakov T; Theriot EC; Alverson AJ
    Curr Genet; 2017 Jun; 63(3):499-507. PubMed ID: 27655214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Did trypanosomatid parasites have photosynthetic ancestors?
    Leander BS
    Trends Microbiol; 2004 Jun; 12(6):251-8. PubMed ID: 15165602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids.
    Turmel M; Gagnon MC; O'Kelly CJ; Otis C; Lemieux C
    Mol Biol Evol; 2009 Mar; 26(3):631-48. PubMed ID: 19074760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure.
    Marin B; Palm A; Klingberg M; Melkonian M
    Protist; 2003 Apr; 154(1):99-145. PubMed ID: 12812373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond.
    Szabová J; Yubuki N; Leander BS; Triemer RE; Hampl V
    BMC Evol Biol; 2014 Feb; 14():25. PubMed ID: 24517416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology.
    Soukal P; Hrdá Š; Karnkowska A; Milanowski R; Szabová J; Hradilová M; Strnad H; Vlček Č; Čepička I; Hampl V
    Sci Rep; 2021 Jun; 11(1):13070. PubMed ID: 34158556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermediate introns in nuclear genes of euglenids - are they a distinct type?
    Milanowski R; Gumińska N; Karnkowska A; Ishikawa T; Zakryś B
    BMC Evol Biol; 2016 Feb; 16():49. PubMed ID: 26923034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.
    Zhang L; Wang X; Liu T; Wang G; Chi S; Liu C; Wang H
    PLoS One; 2015; 10(10):e0139366. PubMed ID: 26426800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.
    Ponce-Toledo RI; Moreira D; López-García P; Deschamps P
    Mol Biol Evol; 2018 Sep; 35(9):2198-2204. PubMed ID: 29924337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences.
    Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T
    J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known.
    Muñoz-Gómez SA; Mejía-Franco FG; Durnin K; Colp M; Grisdale CJ; Archibald JM; Slamovits CH
    Curr Biol; 2017 Jun; 27(11):1677-1684.e4. PubMed ID: 28528908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis.
    Vesteg M; Vacula R; Steiner JM; Mateásiková B; Löffelhardt W; Brejová B; Krajcovic J
    DNA Res; 2010 Aug; 17(4):223-31. PubMed ID: 20587589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae.
    Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK
    BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.