BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23301023)

  • 1. Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis.
    Türkcan S; Richly MU; Alexandrou A; Masson JB
    PLoS One; 2013; 8(1):e53073. PubMed ID: 23301023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu(3+)-doped oxide nanoparticles.
    Türkcan S; Masson JB; Casanova D; Mialon G; Gacoin T; Boilot JP; Popoff MR; Alexandrou A
    Biophys J; 2012 May; 102(10):2299-308. PubMed ID: 22677383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomer formation of Clostridium perfringens epsilon-toxin is induced by activation of neutral sphingomyelinase.
    Takagishi T; Oda M; Takehara M; Kobayashi K; Nagahama M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2681-2688. PubMed ID: 27453200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The state of lipid rafts: from model membranes to cells.
    Edidin M
    Annu Rev Biophys Biomol Struct; 2003; 32():257-83. PubMed ID: 12543707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sensing of membrane microdomains based on pore-forming toxins.
    Skočaj M; Bakrač B; Križaj I; Maček P; Anderluh G; Sepčić K
    Curr Med Chem; 2013; 20(4):491-501. PubMed ID: 23244522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring maps of forces inside cell membrane microdomains.
    Masson JB; Casanova D; Türkcan S; Voisinne G; Popoff MR; Vergassola M; Alexandrou A
    Phys Rev Lett; 2009 Jan; 102(4):048103. PubMed ID: 19257479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide.
    Gil C; Dorca-Arévalo J; Blasi J
    PLoS One; 2015; 10(10):e0140321. PubMed ID: 26452234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor displacement in the cell membrane by hydrodynamic force amplification through nanoparticles.
    Türkcan S; Richly MU; Bouzigues CI; Allain JM; Alexandrou A
    Biophys J; 2013 Jul; 105(1):116-26. PubMed ID: 23823230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid rafts as a membrane-organizing principle.
    Lingwood D; Simons K
    Science; 2010 Jan; 327(5961):46-50. PubMed ID: 20044567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarity and lipid raft association of the components of the ciliary neurotrophic factor receptor complex in Madin-Darby canine kidney cells.
    Buk DM; Waibel M; Braig C; Martens AS; Heinrich PC; Graeve L
    J Cell Sci; 2004 Apr; 117(Pt 10):2063-75. PubMed ID: 15054106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confinement energy landscape classification reveals membrane receptor nano-organization mechanisms.
    Yu C; Richly M; Hoang TT; El Beheiry M; Türkcan S; Masson JB; Alexandrou A; Bouzigues CI
    Biophys J; 2024 Jun; ():. PubMed ID: 38845200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation.
    Zhuang M; Oltean DI; Gómez I; Pullikuth AK; Soberón M; Bravo A; Gill SS
    J Biol Chem; 2002 Apr; 277(16):13863-72. PubMed ID: 11836242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy.
    Poole K; Meder D; Simons K; Müller D
    FEBS Lett; 2004 May; 565(1-3):53-8. PubMed ID: 15135052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy.
    Subczynski WK; Kusumi A
    Biochim Biophys Acta; 2003 Mar; 1610(2):231-43. PubMed ID: 12648777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into lipid raft structure and formation from experiments in model membranes.
    London E
    Curr Opin Struct Biol; 2002 Aug; 12(4):480-6. PubMed ID: 12163071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of raft-like assemblies within clusters of influenza hemagglutinin observed by MD simulations.
    Parton DL; Tek A; Baaden M; Sansom MS
    PLoS Comput Biol; 2013 Apr; 9(4):e1003034. PubMed ID: 23592976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium enhances binding of Clostridium perfringens epsilon toxin to sulfatide.
    Gil C; Dorca-Arévalo J; Blasi J
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):161-169. PubMed ID: 30463699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium perfringens epsilon-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes.
    Miyata S; Minami J; Tamai E; Matsushita O; Shimamoto S; Okabe A
    J Biol Chem; 2002 Oct; 277(42):39463-8. PubMed ID: 12177068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.