BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23301092)

  • 1. How deep-sea wood falls sustain chemosynthetic life.
    Bienhold C; Pop Ristova P; Wenzhöfer F; Dittmar T; Boetius A
    PLoS One; 2013; 8(1):e53590. PubMed ID: 23301092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls.
    Bernardino AF; Levin LA; Thurber AR; Smith CR
    PLoS One; 2012; 7(4):e33515. PubMed ID: 22496753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological succession leads to chemosynthesis in mats colonizing wood in sea water.
    Kalenitchenko D; Dupraz M; Le Bris N; Petetin C; Rose C; West NJ; Galand PE
    ISME J; 2016 Sep; 10(9):2246-58. PubMed ID: 26905628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does substrate matter in the deep sea? A comparison of bone, wood, and carbonate rock colonizers.
    Pereira OS; Gonzalez J; Mendoza G; Le J; McNeill M; Ontiveros J; Lee RW; Rouse GW; Cortés J; Levin LA
    PLoS One; 2022; 17(7):e0271635. PubMed ID: 35857748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.
    German CR; Ramirez-Llodra E; Baker MC; Tyler PA;
    PLoS One; 2011; 6(8):e23259. PubMed ID: 21829722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sunken trees in the deep sea link terrestrial and marine biodiversity.
    McClain CR; Boolukos CM; Bryant SRD; Hanks G
    Ecology; 2023 Nov; 104(11):e4168. PubMed ID: 37712249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex factors shape phenotypic variation in deep-sea limpets.
    Chen C; Watanabe HK; Nagai Y; Toyofuku T; Xu T; Sun J; Qiu JW; Sasaki T
    Biol Lett; 2019 Oct; 15(10):20190504. PubMed ID: 31640530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of biogeographic ranges in the deep sea.
    McClain CR; Hardy SM
    Proc Biol Sci; 2010 Dec; 277(1700):3533-46. PubMed ID: 20667884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new chemosymbiotic bivalve species of the genus
    Yang M; Li B; Gan Z; Dong D; Li X
    Zookeys; 2024; 1198():185-192. PubMed ID: 38698807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An historical "wreck": A transcriptome assembly of the naval shipworm, Teredo navalis Linnaeus, 1978.
    Gomes-Dos-Santos A; Domingues M; Ruivo R; Fonseca E; Froufe E; Deyanova D; Franco JN; C Castro LF
    Mar Genomics; 2024 Apr; 74():101097. PubMed ID: 38485291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks.
    Mugge RL; Moseley RD; Hamdan LJ
    Microorganisms; 2023 Sep; 11(10):. PubMed ID: 37894074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications.
    Nawaz MZ; Subin Sasidharan R; Alghamdi HA; Dang H
    Mar Drugs; 2022 Jan; 20(2):. PubMed ID: 35200637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autochthonous production contributes to the diet of wood-boring invertebrates in temperate shallow water.
    Nishimoto A; Haga T; Asakura A; Shirayama Y
    Oecologia; 2021 Jul; 196(3):877-889. PubMed ID: 34159424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First evidence of microbial wood degradation in the coastal waters of the Antarctic.
    Björdal CG; Dayton PK
    Sci Rep; 2020 Jul; 10(1):12774. PubMed ID: 32728072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alligators in the abyss: The first experimental reptilian food fall in the deep ocean.
    McClain CR; Nunnally C; Dixon R; Rouse GW; Benfield M
    PLoS One; 2019; 14(12):e0225345. PubMed ID: 31860642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of Bathymodiolus mussels and gill symbionts associated with chemosynthetic habitats from the U.S. Atlantic margin.
    Coykendall DK; Cornman RS; Prouty NG; Brooke S; Demopoulos AWJ; Morrison CL
    PLoS One; 2019; 14(3):e0211616. PubMed ID: 30870419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ development of a methanotrophic microbiome in deep-sea sediments.
    Ruff SE; Felden J; Gruber-Vodicka HR; Marcon Y; Knittel K; Ramette A; Boetius A
    ISME J; 2019 Jan; 13(1):197-213. PubMed ID: 30154496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The early conversion of deep-sea wood falls into chemosynthetic hotspots revealed by in situ monitoring.
    Kalenitchenko D; Péru E; Contreira Pereira L; Petetin C; Galand PE; Le Bris N
    Sci Rep; 2018 Jan; 8(1):907. PubMed ID: 29343757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea.
    Kalenitchenko D; Le Bris N; Dadaglio L; Peru E; Besserer A; Galand PE
    ISME J; 2018 Feb; 12(2):367-379. PubMed ID: 28984846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidotolerant
    Morawe M; Hoeke H; Wissenbach DK; Lentendu G; Wubet T; Kröber E; Kolb S
    Front Microbiol; 2017; 8():1361. PubMed ID: 28790984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.