These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
662 related articles for article (PubMed ID: 23301498)
1. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. Hahne H; Sobotzki N; Nyberg T; Helm D; Borodkin VS; van Aalten DM; Agnew B; Kuster B J Proteome Res; 2013 Feb; 12(2):927-36. PubMed ID: 23301498 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435 [TBL] [Abstract][Full Text] [Related]
3. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Deracinois B; Camoin L; Lambert M; Boyer JB; Dupont E; Bastide B; Cieniewski-Bernard C J Proteomics; 2018 Aug; 186():83-97. PubMed ID: 30016717 [TBL] [Abstract][Full Text] [Related]
4. O-GlcNAc Site Mapping by Using a Combination of Chemoenzymatic Labeling, Copper-Free Click Chemistry, Reductive Cleavage, and Electron-Transfer Dissociation Mass Spectrometry. Ma J; Wang WH; Li Z; Shabanowitz J; Hunt DF; Hart GW Anal Chem; 2019 Feb; 91(4):2620-2625. PubMed ID: 30657688 [TBL] [Abstract][Full Text] [Related]
5. Identification of O-linked N-acetylglucosamine (O-GlcNAc)-modified osteoblast proteins by electron transfer dissociation tandem mass spectrometry reveals proteins critical for bone formation. Nagel AK; Schilling M; Comte-Walters S; Berkaw MN; Ball LE Mol Cell Proteomics; 2013 Apr; 12(4):945-55. PubMed ID: 23443134 [TBL] [Abstract][Full Text] [Related]
7. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification. Shen B; Zhang W; Shi Z; Tian F; Deng Y; Sun C; Wang G; Qin W; Qian X Talanta; 2017 Jul; 169():195-202. PubMed ID: 28411811 [TBL] [Abstract][Full Text] [Related]
8. Identification of the major site of O-linked beta-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1. Ball LE; Berkaw MN; Buse MG Mol Cell Proteomics; 2006 Feb; 5(2):313-23. PubMed ID: 16244361 [TBL] [Abstract][Full Text] [Related]
9. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation. Thompson JW; Griffin ME; Hsieh-Wilson LC Methods Enzymol; 2018; 598():101-135. PubMed ID: 29306432 [TBL] [Abstract][Full Text] [Related]
10. Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Hahne H; Gholami AM; Kuster B Mol Cell Proteomics; 2012 Oct; 11(10):843-50. PubMed ID: 22661428 [TBL] [Abstract][Full Text] [Related]
11. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells. de Queiroz RM; Madan R; Chien J; Dias WB; Slawson C J Biol Chem; 2016 Sep; 291(36):18897-914. PubMed ID: 27402830 [TBL] [Abstract][Full Text] [Related]
12. Global identification of O-GlcNAc-modified proteins. Nandi A; Sprung R; Barma DK; Zhao Y; Kim SC; Falck JR; Zhao Y Anal Chem; 2006 Jan; 78(2):452-8. PubMed ID: 16408927 [TBL] [Abstract][Full Text] [Related]
13. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Gurcel C; Vercoutter-Edouart AS; Fonbonne C; Mortuaire M; Salvador A; Michalski JC; Lemoine J Anal Bioanal Chem; 2008 Apr; 390(8):2089-97. PubMed ID: 18369606 [TBL] [Abstract][Full Text] [Related]
14. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Khidekel N; Ficarro SB; Peters EC; Hsieh-Wilson LC Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13132-7. PubMed ID: 15340146 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive mapping of O-GlcNAc modification sites using a chemically cleavable tag. Griffin ME; Jensen EH; Mason DE; Jenkins CL; Stone SE; Peters EC; Hsieh-Wilson LC Mol Biosyst; 2016 May; 12(6):1756-9. PubMed ID: 27063346 [TBL] [Abstract][Full Text] [Related]
16. [Precise identification of Guo Z; Li H; Qin W Se Pu; 2021 Nov; 39(11):1182-1190. PubMed ID: 34677013 [TBL] [Abstract][Full Text] [Related]
17. Deciphering the Functions of O-GlcNAc Glycosylation in the Brain: The Role of Site-Specific Quantitative O-GlcNAcomics. Thompson JW; Sorum AW; Hsieh-Wilson LC Biochemistry; 2018 Jul; 57(27):4010-4018. PubMed ID: 29936833 [TBL] [Abstract][Full Text] [Related]
18. Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain. Liu Y; Li X; Yu Y; Shi J; Liang Z; Run X; Li Y; Dai CL; Grundke-Iqbal I; Iqbal K; Liu F; Gong CX PLoS One; 2012; 7(8):e43724. PubMed ID: 22928023 [TBL] [Abstract][Full Text] [Related]
19. A chemical method for genome- and proteome-wide enrichment and O-GlcNAcylation profiling of chromatin-associated proteins. Huo B; Liu Y; Li L; Qin W Talanta; 2022 May; 241():123167. PubMed ID: 35091346 [TBL] [Abstract][Full Text] [Related]
20. O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41. Olivier-Van Stichelen S; Dehennaut V; Buzy A; Zachayus JL; Guinez C; Mir AM; El Yazidi-Belkoura I; Copin MC; Boureme D; Loyaux D; Ferrara P; Lefebvre T FASEB J; 2014 Aug; 28(8):3325-38. PubMed ID: 24744147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]