These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 23302050)
1. Induced resistance in maize is based on organ-specific defence responses. Balmer D; de Papajewski DV; Planchamp C; Glauser G; Mauch-Mani B Plant J; 2013 Apr; 74(2):213-25. PubMed ID: 23302050 [TBL] [Abstract][Full Text] [Related]
2. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Erb M; Flors V; Karlen D; de Lange E; Planchamp C; D'Alessandro M; Turlings TC; Ton J Plant J; 2009 Jul; 59(2):292-302. PubMed ID: 19392694 [TBL] [Abstract][Full Text] [Related]
3. Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. Erb M; Balmer D; De Lange ES; Von Merey G; Planchamp C; Robert CA; Röder G; Sobhy I; Zwahlen C; Mauch-Mani B; Turlings TC Plant Cell Environ; 2011 Jul; 34(7):1088-103. PubMed ID: 21410707 [TBL] [Abstract][Full Text] [Related]
4. Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Behr M; Motyka V; Weihmann F; Malbeck J; Deising HB; Wirsel SG Mol Plant Microbe Interact; 2012 Aug; 25(8):1073-82. PubMed ID: 22746825 [TBL] [Abstract][Full Text] [Related]
5. Biocontrol activity and primed systemic resistance by compost water extracts against anthracnoses of pepper and cucumber. Sang MK; Kim KD Phytopathology; 2011 Jun; 101(6):732-40. PubMed ID: 21281115 [TBL] [Abstract][Full Text] [Related]
6. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Gorman Z; Christensen SA; Yan Y; He Y; Borrego E; Kolomiets MV Mol Plant Pathol; 2020 May; 21(5):702-715. PubMed ID: 32105380 [TBL] [Abstract][Full Text] [Related]
7. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. Voitsik AM; Muench S; Deising HB; Voll LM BMC Plant Biol; 2013 May; 13():85. PubMed ID: 23718541 [TBL] [Abstract][Full Text] [Related]
8. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788 [TBL] [Abstract][Full Text] [Related]
9. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Behr M; Humbeck K; Hause G; Deising HB; Wirsel SG Mol Plant Microbe Interact; 2010 Jul; 23(7):879-92. PubMed ID: 20521951 [TBL] [Abstract][Full Text] [Related]
10. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Djonovic S; Vargas WA; Kolomiets MV; Horndeski M; Wiest A; Kenerley CM Plant Physiol; 2007 Nov; 145(3):875-89. PubMed ID: 17885089 [TBL] [Abstract][Full Text] [Related]
11. Root infection and systemic colonization of maize by Colletotrichum graminicola. Sukno SA; García VM; Shaw BD; Thon MR Appl Environ Microbiol; 2008 Feb; 74(3):823-32. PubMed ID: 18065625 [TBL] [Abstract][Full Text] [Related]
12. Trichoderma root colonization in maize triggers epigenetic changes in genes related to the jasmonic and salicylic acid pathways that prime defenses against Colletotrichum graminicola leaf infection. Agostini RB; Ariel F; Rius SP; Vargas WA; Campos-Bermudez VA J Exp Bot; 2023 Mar; 74(6):2016-2028. PubMed ID: 36575905 [TBL] [Abstract][Full Text] [Related]
13. A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Crutcher FK; Moran-Diez ME; Ding S; Liu J; Horwitz BA; Mukherjee PK; Kenerley CM Fungal Biol; 2015 Jun; 119(6):476-86. PubMed ID: 25986544 [TBL] [Abstract][Full Text] [Related]
14. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271 [TBL] [Abstract][Full Text] [Related]
15. Restoring (E)-β-Caryophyllene Production in a Non-producing Maize Line Compromises its Resistance against the Fungus Colletotrichum graminicola. Fantaye CA; Köpke D; Gershenzon J; Degenhardt J J Chem Ecol; 2015 Mar; 41(3):213-23. PubMed ID: 25893788 [TBL] [Abstract][Full Text] [Related]
16. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Sanz-Martín JM; Pacheco-Arjona JR; Bello-Rico V; Vargas WA; Monod M; Díaz-Mínguez JM; Thon MR; Sukno SA Mol Plant Pathol; 2016 Sep; 17(7):1048-62. PubMed ID: 26619206 [TBL] [Abstract][Full Text] [Related]
17. A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize. Ibraheem F; Gaffoor I; Tan Q; Shyu CR; Chopra S Molecules; 2015 Jan; 20(2):2388-404. PubMed ID: 25647576 [TBL] [Abstract][Full Text] [Related]
19. Penetration and colonization of unwounded maize tissues by the maize anthracnose pathogen Colletotrichum graminicola and the related nonpathogen C. sublineolum. Venard C; Vaillancourt L Mycologia; 2007; 99(3):368-77. PubMed ID: 17883028 [TBL] [Abstract][Full Text] [Related]
20. Correspondence between symptom development of Colletotrichum graminicola and fungal biomass, quantified by a newly developed qPCR assay, depends on the maize variety. Weihmann F; Eisermann I; Becher R; Krijger JJ; Hübner K; Deising HB; Wirsel SG BMC Microbiol; 2016 May; 16():94. PubMed ID: 27215339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]